If [tex]\(\sin 30^{\circ} = \frac{1}{2}\)[/tex], which statement is true?

A. [tex]\(\cos 150^{\circ} = 0\)[/tex], because the angles are supplements
B. [tex]\(\cos 60^{\circ} = \frac{1}{2}\)[/tex], because the angles are complements
C. [tex]\(\cos 150^{\circ} = 1\)[/tex], because the angles are supplements
D. [tex]\(\cos 60^{\circ} = 0\)[/tex], because the angles are complements



Answer :

To determine which statement is true, let’s use the given information and trigonometric identities.

Given:
[tex]\[ \sin 30^\circ = \frac{1}{2} \][/tex]

We need to determine the true statement among the following options:
1. [tex]\(\cos 150^\circ = 0\)[/tex], because the angles are supplements
2. [tex]\(\cos 60^\circ = \frac{1}{2}\)[/tex], because the angles are complements
3. [tex]\(\cos 150^\circ = 1\)[/tex], because the angles are supplements
4. [tex]\(\cos 60^\circ = 0\)[/tex], because the angles are complements

Step-by-step solution:

1. Complementary Angles Identity:
Complementary angles are two angles whose sum is [tex]\(90^\circ\)[/tex]. For complementary angles [tex]\(\theta\)[/tex] and [tex]\(90^\circ - \theta\)[/tex], the trigonometric identity is:
[tex]\[ \cos(90^\circ - \theta) = \sin(\theta) \][/tex]

Here, if we apply this identity with [tex]\(\theta = 30^\circ\)[/tex]:
[tex]\[ \cos(90^\circ - 30^\circ) = \cos 60^\circ = \sin 30^\circ \][/tex]

Given [tex]\(\sin 30^\circ = \frac{1}{2}\)[/tex], we have:
[tex]\[ \cos 60^\circ = \frac{1}{2} \][/tex]

Therefore, the statement: [tex]\(\cos 60^\circ = \frac{1}{2}\)[/tex], because the angles are complements, is true.

2. Supplementary Angles Identity:
Supplementary angles are two angles whose sum is [tex]\(180^\circ\)[/tex]. For supplementary angles [tex]\(\theta\)[/tex] and [tex]\(180^\circ - \theta\)[/tex], the trigonometric identity is:
[tex]\[ \cos(180^\circ - \theta) = -\cos(\theta) \][/tex]

Considering [tex]\(\theta = 30^\circ\)[/tex]:
[tex]\[ \cos 150^\circ = \cos(180^\circ - 30^\circ) = -\cos 30^\circ \][/tex]
[tex]\[ \cos 30^\circ = \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ \cos 150^\circ = -\frac{\sqrt{3}}{2} \][/tex]

Therefore, none of the statements about [tex]\(\cos 150^\circ\)[/tex] being 0 or 1 are correct.

Conclusively, the only statement that holds true is:
[tex]\[ \cos 60^\circ = \frac{1}{2}, \text{ because the angles are complements} \][/tex]