Answer :

To determine the original value from which [tex]\( 135\% \)[/tex] corresponds to [tex]\( 3645 \)[/tex] kilograms, we follow these steps:

1. Let the original value be [tex]\( x \)[/tex] kilograms.

2. According to the problem, [tex]\( 135\% \)[/tex] of this original value [tex]\( x \)[/tex] is [tex]\( 3645 \)[/tex] kg. Mathematically, this is represented as:
[tex]\[ 135\% \times x = 3645 \text{ kg} \][/tex]

3. We know that [tex]\( 135\% \)[/tex] can be written as a fraction:
[tex]\[ 135\% = \frac{135}{100} = 1.35 \][/tex]

4. Substituting [tex]\( 1.35 \)[/tex] for [tex]\( 135\% \)[/tex] in the equation gives:
[tex]\[ 1.35 \times x = 3645 \text{ kg} \][/tex]

5. To solve for [tex]\( x \)[/tex], divide both sides of the equation by [tex]\( 1.35 \)[/tex]:
[tex]\[ x = \frac{3645 \text{ kg}}{1.35} \][/tex]

6. After performing the division, we find:
[tex]\[ x \approx 2700 \text{ kg} \][/tex]

Thus, the original value is [tex]\( 2700 \)[/tex] kilograms.