Complete the table of values for [tex]\( y = x^2 - x - 6 \)[/tex].

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
$x$ & -3 & -2 & -1 & 0 & 1 & 2 \\
\hline
$y$ & 6 & -8 & -8 & -6 & -6 & -4 \\
\hline
\end{tabular}
\][/tex]



Answer :

To complete the table of values for the function [tex]\( y = x^2 - x - 6 \)[/tex], we need to calculate the value of [tex]\( y \)[/tex] for each given [tex]\( x \)[/tex] value in the table.

Here are the steps for each calculation:

1. When [tex]\( x = -3 \)[/tex]:
[tex]\[ y = (-3)^2 - (-3) - 6 = 9 + 3 - 6 = 6 \][/tex]
So, [tex]\( y = 6 \)[/tex].

2. When [tex]\( x = -2 \)[/tex]:
[tex]\[ y = (-2)^2 - (-2) - 6 = 4 + 2 - 6 = 0 \][/tex]
So, [tex]\( y = 0 \)[/tex].

3. When [tex]\( x = -1 \)[/tex]:
[tex]\[ y = (-1)^2 - (-1) - 6 = 1 + 1 - 6 = -4 \][/tex]
So, [tex]\( y = -4 \)[/tex].

4. When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0^2 - 0 - 6 = -6 \][/tex]
So, [tex]\( y = -6 \)[/tex].

5. When [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 1^2 - 1 - 6 = 1 - 1 - 6 = -6 \][/tex]
So, [tex]\( y = -6 \)[/tex].

6. When [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 2^2 - 2 - 6 = 4 - 2 - 6 = -4 \][/tex]
So, [tex]\( y = -4 \)[/tex].

Now, let's update the table with the corrected values of [tex]\( y \)[/tex]:

[tex]\[ \begin{tabular}{|c|c|c|c|c|c|c|} \hline $x$ & -3 & -2 & -1 & 0 & 1 & 2 \\ \hline $y$ & 6 & 0 & -4 & -6 & -6 & -4 \\ \hline \end{tabular} \][/tex]