Answer :
To find the range of the relation given in the table, we need to determine all the unique [tex]\( y \)[/tex]-values corresponding to the [tex]\( x \)[/tex]-values provided. Here are the steps to solve the problem:
1. Identify the [tex]\( y \)[/tex]-values from the table:
Given table:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -2 & 0 \\ \hline -1 & 2 \\ \hline 0 & 4 \\ \hline 1 & 2 \\ \hline 2 & 0 \\ \hline \end{tabular} \][/tex]
2. List the [tex]\( y \)[/tex]-values:
From the table, the [tex]\( y \)[/tex]-values are [tex]\( 0 \)[/tex], [tex]\( 2 \)[/tex], [tex]\( 4 \)[/tex], [tex]\( 2 \)[/tex], and [tex]\( 0 \)[/tex].
3. Determine the unique [tex]\( y \)[/tex]-values (the range):
The unique [tex]\( y \)[/tex]-values in the list are [tex]\( 0 \)[/tex], [tex]\( 2 \)[/tex], and [tex]\( 4 \)[/tex].
4. List the range:
The range of the relation is the set of these unique [tex]\( y \)[/tex]-values. Therefore, the range is [tex]\( \{0, 2, 4\} \)[/tex].
Given our options, the correct range is:
- [tex]\(\{0, 2, 4\}\)[/tex]
Thus, the range of the relation in the table is [tex]\(\{0, 2, 4\}\)[/tex].
1. Identify the [tex]\( y \)[/tex]-values from the table:
Given table:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -2 & 0 \\ \hline -1 & 2 \\ \hline 0 & 4 \\ \hline 1 & 2 \\ \hline 2 & 0 \\ \hline \end{tabular} \][/tex]
2. List the [tex]\( y \)[/tex]-values:
From the table, the [tex]\( y \)[/tex]-values are [tex]\( 0 \)[/tex], [tex]\( 2 \)[/tex], [tex]\( 4 \)[/tex], [tex]\( 2 \)[/tex], and [tex]\( 0 \)[/tex].
3. Determine the unique [tex]\( y \)[/tex]-values (the range):
The unique [tex]\( y \)[/tex]-values in the list are [tex]\( 0 \)[/tex], [tex]\( 2 \)[/tex], and [tex]\( 4 \)[/tex].
4. List the range:
The range of the relation is the set of these unique [tex]\( y \)[/tex]-values. Therefore, the range is [tex]\( \{0, 2, 4\} \)[/tex].
Given our options, the correct range is:
- [tex]\(\{0, 2, 4\}\)[/tex]
Thus, the range of the relation in the table is [tex]\(\{0, 2, 4\}\)[/tex].