Answer :
To simplify the expression [tex]\(\sqrt{13041.64} + 35 \times \sqrt{29.16}\)[/tex], let's break down the problem into smaller parts and solve it step-by-step.
1. Calculate the square root of [tex]\(13041.64\)[/tex]:
[tex]\[ \sqrt{13041.64} \approx 114.2 \][/tex]
2. Calculate the square root of [tex]\(29.16\)[/tex]:
[tex]\[ \sqrt{29.16} \approx 5.4 \][/tex]
3. Multiply the second square root by 35:
[tex]\[ 35 \times \sqrt{29.16} = 35 \times 5.4 = 189.0 \][/tex]
4. Add the result from step 3 to the square root from step 1:
[tex]\[ 114.2 + 189.0 = 303.2 \][/tex]
So, the simplified form of the expression [tex]\(\sqrt{13041.64} + 35 \times \sqrt{29.16}\)[/tex] is:
[tex]\[ \boxed{303.2} \][/tex]
1. Calculate the square root of [tex]\(13041.64\)[/tex]:
[tex]\[ \sqrt{13041.64} \approx 114.2 \][/tex]
2. Calculate the square root of [tex]\(29.16\)[/tex]:
[tex]\[ \sqrt{29.16} \approx 5.4 \][/tex]
3. Multiply the second square root by 35:
[tex]\[ 35 \times \sqrt{29.16} = 35 \times 5.4 = 189.0 \][/tex]
4. Add the result from step 3 to the square root from step 1:
[tex]\[ 114.2 + 189.0 = 303.2 \][/tex]
So, the simplified form of the expression [tex]\(\sqrt{13041.64} + 35 \times \sqrt{29.16}\)[/tex] is:
[tex]\[ \boxed{303.2} \][/tex]