The dimensions of a rectangular storage tank are length 16 m, width 12 m, and height 12 m. If the tank is filled with water, determine:

a) The volume of water in the tank in cubic meters.

b) The number of kiloliters of water the tank will hold.

c) The mass of the water in metric tonnes.



Answer :

Of course! Let's go through the problem step-by-step to determine the required values:

### Given Data:
- Length of the tank, [tex]\( L = 16 \)[/tex] meters
- Width of the tank, [tex]\( W = 12 \)[/tex] meters
- Height of the tank, [tex]\( H = 12 \)[/tex] meters

---

### Step a) Volume of Water in the Tank in Cubic Meters

The volume of a rectangular tank can be calculated using the formula:
[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]

Substituting the given values:
[tex]\[ \text{Volume} = 16 \, \text{m} \times 12 \, \text{m} \times 12 \, \text{m} \][/tex]

[tex]\[ \text{Volume} = 2304 \, \text{cubic meters} \][/tex]

Therefore, the volume of the tank is [tex]\(\mathbf{2304 \, \text{cubic meters}}\)[/tex].

---

### Step b) Number of Kiloliters of Water the Tank Can Hold

We know that 1 cubic meter is equivalent to 1 kiloliter.

Therefore, the number of kiloliters of water the tank can hold is:
[tex]\[ 2304 \, \text{cubic meters} = 2304 \, \text{kiloliters} \][/tex]

The tank can hold [tex]\(\mathbf{2304 \, \text{kiloliters}}\)[/tex] of water.

---

### Step c) Mass of the Water in Metric Tonnes

The density of water is approximately 1 metric tonne per kiloliter. Given that 1 cubic meter translates to 1 kiloliter and thus to 1 metric tonne:

The mass of the water in the tank is:
[tex]\[ 2304 \, \text{kiloliters} \times 1 \, \text{metric tonne per kiloliter} = 2304 \, \text{metric tonnes} \][/tex]

Therefore, the mass of the water in the tank is [tex]\(\mathbf{2304 \, \text{metric tonnes}}\)[/tex].

---

### Summary:
- The volume of the tank: [tex]\(\mathbf{2304 \, \text{cubic meters}}\)[/tex]
- The number of kiloliters the tank will hold: [tex]\(\mathbf{2304 \, \text{kiloliters}}\)[/tex]
- The mass of the water: [tex]\(\mathbf{2304 \, \text{metric tonnes}}\)[/tex]