Answer :
Of course! Let's go through the problem step-by-step to determine the required values:
### Given Data:
- Length of the tank, [tex]\( L = 16 \)[/tex] meters
- Width of the tank, [tex]\( W = 12 \)[/tex] meters
- Height of the tank, [tex]\( H = 12 \)[/tex] meters
---
### Step a) Volume of Water in the Tank in Cubic Meters
The volume of a rectangular tank can be calculated using the formula:
[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]
Substituting the given values:
[tex]\[ \text{Volume} = 16 \, \text{m} \times 12 \, \text{m} \times 12 \, \text{m} \][/tex]
[tex]\[ \text{Volume} = 2304 \, \text{cubic meters} \][/tex]
Therefore, the volume of the tank is [tex]\(\mathbf{2304 \, \text{cubic meters}}\)[/tex].
---
### Step b) Number of Kiloliters of Water the Tank Can Hold
We know that 1 cubic meter is equivalent to 1 kiloliter.
Therefore, the number of kiloliters of water the tank can hold is:
[tex]\[ 2304 \, \text{cubic meters} = 2304 \, \text{kiloliters} \][/tex]
The tank can hold [tex]\(\mathbf{2304 \, \text{kiloliters}}\)[/tex] of water.
---
### Step c) Mass of the Water in Metric Tonnes
The density of water is approximately 1 metric tonne per kiloliter. Given that 1 cubic meter translates to 1 kiloliter and thus to 1 metric tonne:
The mass of the water in the tank is:
[tex]\[ 2304 \, \text{kiloliters} \times 1 \, \text{metric tonne per kiloliter} = 2304 \, \text{metric tonnes} \][/tex]
Therefore, the mass of the water in the tank is [tex]\(\mathbf{2304 \, \text{metric tonnes}}\)[/tex].
---
### Summary:
- The volume of the tank: [tex]\(\mathbf{2304 \, \text{cubic meters}}\)[/tex]
- The number of kiloliters the tank will hold: [tex]\(\mathbf{2304 \, \text{kiloliters}}\)[/tex]
- The mass of the water: [tex]\(\mathbf{2304 \, \text{metric tonnes}}\)[/tex]
### Given Data:
- Length of the tank, [tex]\( L = 16 \)[/tex] meters
- Width of the tank, [tex]\( W = 12 \)[/tex] meters
- Height of the tank, [tex]\( H = 12 \)[/tex] meters
---
### Step a) Volume of Water in the Tank in Cubic Meters
The volume of a rectangular tank can be calculated using the formula:
[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]
Substituting the given values:
[tex]\[ \text{Volume} = 16 \, \text{m} \times 12 \, \text{m} \times 12 \, \text{m} \][/tex]
[tex]\[ \text{Volume} = 2304 \, \text{cubic meters} \][/tex]
Therefore, the volume of the tank is [tex]\(\mathbf{2304 \, \text{cubic meters}}\)[/tex].
---
### Step b) Number of Kiloliters of Water the Tank Can Hold
We know that 1 cubic meter is equivalent to 1 kiloliter.
Therefore, the number of kiloliters of water the tank can hold is:
[tex]\[ 2304 \, \text{cubic meters} = 2304 \, \text{kiloliters} \][/tex]
The tank can hold [tex]\(\mathbf{2304 \, \text{kiloliters}}\)[/tex] of water.
---
### Step c) Mass of the Water in Metric Tonnes
The density of water is approximately 1 metric tonne per kiloliter. Given that 1 cubic meter translates to 1 kiloliter and thus to 1 metric tonne:
The mass of the water in the tank is:
[tex]\[ 2304 \, \text{kiloliters} \times 1 \, \text{metric tonne per kiloliter} = 2304 \, \text{metric tonnes} \][/tex]
Therefore, the mass of the water in the tank is [tex]\(\mathbf{2304 \, \text{metric tonnes}}\)[/tex].
---
### Summary:
- The volume of the tank: [tex]\(\mathbf{2304 \, \text{cubic meters}}\)[/tex]
- The number of kiloliters the tank will hold: [tex]\(\mathbf{2304 \, \text{kiloliters}}\)[/tex]
- The mass of the water: [tex]\(\mathbf{2304 \, \text{metric tonnes}}\)[/tex]