Answer :

To solve this problem, let's break it down into smaller steps and perform each calculation carefully. We are given:

- Divisor ([tex]\( d \)[/tex]) = 15
- Cociente ([tex]\( q \)[/tex]) = 36
- Residuo ([tex]\( r \)[/tex]) = 9
- Incremento al dividendo = 18

Firstly, we need to determine the original dividend ([tex]\( D \)[/tex]) before the increment. The relationship between dividend, divisor, quotient, and remainder is given by the formula:

[tex]\[ D = d \cdot q + r \][/tex]

Substituting the given values:

[tex]\[ D = 15 \cdot 36 + 9 \][/tex]

Calculating it gives us:

[tex]\[ D = 540 + 9 \][/tex]
[tex]\[ D = 549 \][/tex]

So, the original dividend is 549.

Next, we need to find the new dividend after increasing it by 18:

[tex]\[ D_{\text{new}} = D + 18 \][/tex]
[tex]\[ D_{\text{new}} = 549 + 18 \][/tex]

Calculating it gives us:

[tex]\[ D_{\text{new}} = 567 \][/tex]

Now, we determine the new quotient ([tex]\( q' \)[/tex]) and remainder ([tex]\( r' \)[/tex]) when the new dividend (567) is divided by the same divisor (15).
The relationship is still:

[tex]\[ D_{\text{new}} = d \cdot q' + r' \][/tex]

We need to calculate the integer division and the remainder:

[tex]\[ q' = \left\lfloor \frac{567}{15} \right\rfloor \][/tex]
[tex]\[ r' = 567 \mod 15 \][/tex]

Calculating [tex]\( q' \)[/tex]:

[tex]\[ q' = \left\lfloor \frac{567}{15} \right\rfloor \][/tex]
[tex]\[ q' = 37 \][/tex]

For the remainder [tex]\( r' \)[/tex]:

[tex]\[ r' = 567 \mod 15 \][/tex]
[tex]\[ r' = 12 \][/tex]

So, with the new dividend of 567, the new quotient is 37 and the new remainder is 12.

Thus, the new quotient after the increment is 37.