Without expanding any brackets, show how to work out the exact solutions of [tex]\( 4(x+7)^2 = 25 \)[/tex].

Give the solutions.



Answer :

Sure! Let's solve the equation step-by-step:

The given equation is:
[tex]\[ 4(x + 7)^2 = 25 \][/tex]

1. Divide both sides by 4 to isolate the squared expression:
[tex]\[ (x + 7)^2 = \frac{25}{4} \][/tex]
[tex]\[ (x + 7)^2 = 6.25 \][/tex]

2. Take the square root of both sides to remove the square:
[tex]\[ x + 7 = \pm \sqrt{6.25} \][/tex]

Since [tex]\(\sqrt{6.25} = 2.5\)[/tex], we have:
[tex]\[ x + 7 = \pm 2.5 \][/tex]

3. Solve for [tex]\(x\)[/tex] by considering the two possible cases:

- For the positive root:
[tex]\[ x + 7 = 2.5 \][/tex]
[tex]\[ x = 2.5 - 7 \][/tex]
[tex]\[ x = -4.5 \][/tex]

- For the negative root:
[tex]\[ x + 7 = -2.5 \][/tex]
[tex]\[ x = -2.5 - 7 \][/tex]
[tex]\[ x = -9.5 \][/tex]

So, the solutions to the equation [tex]\( 4(x + 7)^2 = 25 \)[/tex] are:
[tex]\[ x = -4.5 \][/tex]
[tex]\[ x = -9.5 \][/tex]