XYZ Corporation invests [tex]$8,000 into 91-day treasury bills with an interest rate of 2.1%. If the broker charges a $[/tex]30 commission, what is the yield?

[tex]\[
\text{yield} = \frac{\text{amount invested} \times \text{interest rate} \times \left(\frac{\text{days invested}}{360 \text{ days}}\right)}{\text{amount invested} + \text{commission}}
\][/tex]

Give your answer as a percent rounded to the nearest hundredth.



Answer :

To determine the yield of XYZ Corporation's investment, we need to follow these detailed steps:

1. Assign and identify given values:
- Amount invested ([tex]$P$[/tex]): \[tex]$8,000 - Interest rate ($[/tex]r[tex]$): 2.1% (or 0.021 in decimal form) - Days invested ($[/tex]t[tex]$): 91 days - Broker's commission: \$[/tex]30
- Days in a year ([tex]$T$[/tex]): 360 days (as per traditional financial calculations)

2. Calculate the interest earned:
The interest earned ([tex]$I$[/tex]) can be calculated using the formula for simple interest:
[tex]\[ I = P \times r \times \left(\frac{t}{T}\right) \][/tex]
Substituting in the given values:
[tex]\[ I = 8000 \times 0.021 \times \left(\frac{91}{360}\right) \][/tex]
This yields:
[tex]\[ I \approx 42.47 \][/tex]

3. Calculate the total return:
The total return is the interest earned minus the broker's commission:
[tex]\[ \text{Total Return} = I - \text{Commission} \][/tex]
Substituting in our values:
[tex]\[ \text{Total Return} \approx 42.47 - 30 = 12.47 \][/tex]

4. Calculate the yield percentage:
The yield percentage is calculated using the following formula:
[tex]\[ \text{Yield Percentage} = \left(\frac{\text{Total Return}}{P}\right) \times 100 \][/tex]
Substituting in our values:
[tex]\[ \text{Yield Percentage} \approx \left(\frac{12.47}{8000}\right) \times 100 \approx 0.16\% \][/tex]

Therefore, the yield of XYZ Corporation's investment, rounded to the nearest hundredth, is:

[tex]\[ \boxed{0.16\%} \][/tex]