What are the [tex]\( x \)[/tex]- and [tex]\( y \)[/tex]-coordinates of point [tex]\( E \)[/tex], which partitions the directed line segment from [tex]\( J \)[/tex] to [tex]\( K \)[/tex] into a ratio of [tex]\( 1:4 \)[/tex]?

[tex]\[
\begin{array}{l}
x=\left(\frac{m}{m+n}\right)\left(x_2-x_1\right)+x_1 \\
y=\left(\frac{m}{m+n}\right)\left(y_2-y_1\right)+y_1
\end{array}
\][/tex]

A. [tex]\((-13, -3)\)[/tex]
B. [tex]\((-7, -1)\)[/tex]
C. [tex]\((-5, 0)\)[/tex]
D. [tex]\((17, 11)\)[/tex]



Answer :

To find the coordinates of point [tex]\( E \)[/tex], which partitions the directed line segment from point [tex]\( J \)[/tex] to point [tex]\( K \)[/tex] into a ratio of [tex]\( 1 : 4 \)[/tex], we use the section formula in coordinate geometry.

Given:
- Coordinates of point [tex]\( J \)[/tex]: [tex]\( (x_1, y_1) = (-13, -3) \)[/tex]
- Coordinates of point [tex]\( K \)[/tex]: [tex]\( (x_2, y_2) = (17, 11) \)[/tex]
- Ratio [tex]\( J \)[/tex] to [tex]\( K \)[/tex]: [tex]\( 1 : 4 \)[/tex] (where [tex]\( m = 1 \)[/tex] and [tex]\( n = 4 \)[/tex])

The section formula states:

[tex]\[ x = \frac{m \cdot x_2 + n \cdot x_1}{m + n} \][/tex]

[tex]\[ y = \frac{m \cdot y_2 + n \cdot y_1}{m + n} \][/tex]

Substituting the given values into these formulas:

For the [tex]\( x \)[/tex]-coordinate of point [tex]\( E \)[/tex]:

[tex]\[ x = \frac{1 \cdot 17 + 4 \cdot (-13)}{1 + 4} \][/tex]

Solving this:

[tex]\[ x = \frac{17 + (-52)}{5} \][/tex]
[tex]\[ x = \frac{17 - 52}{5} \][/tex]
[tex]\[ x = \frac{-35}{5} \][/tex]
[tex]\[ x = -7 \][/tex]

For the [tex]\( y \)[/tex]-coordinate of point [tex]\( E \)[/tex]:

[tex]\[ y = \frac{1 \cdot 11 + 4 \cdot (-3)}{1 + 4} \][/tex]

Solving this:

[tex]\[ y = \frac{11 + (-12)}{5} \][/tex]
[tex]\[ y = \frac{11 - 12}{5} \][/tex]
[tex]\[ y = \frac{-1}{5} \][/tex]
[tex]\[ y = -0.2 \][/tex]

So, the coordinates of point [tex]\( E \)[/tex] are [tex]\( (-7, -0.2) \)[/tex].