What is the factored form of [tex]\(x^3-1\)[/tex]?

A. [tex]\((x^3-1)(x^2+x+1)\)[/tex]

B. [tex]\((x-1)(x^2-x+1)\)[/tex]

C. [tex]\((x-1)(x^2+x+1)\)[/tex]

D. [tex]\((x^3-1)(x^2+2x+1)\)[/tex]



Answer :

To factor the expression [tex]\( x^3 - 1 \)[/tex], we use the difference of cubes formula, which states:

[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]

For [tex]\( x^3 - 1 \)[/tex], we identify [tex]\( a = x \)[/tex] and [tex]\( b = 1 \)[/tex]. Plugging these into the formula gives:

[tex]\[ x^3 - 1^3 = (x - 1)(x^2 + x \cdot 1 + 1^2) \][/tex]

Simplifying the expression inside the parentheses:

[tex]\[ (x - 1)(x^2 + x + 1) \][/tex]

Therefore, the factored form of [tex]\( x^3 - 1 \)[/tex] is:

[tex]\[ (x-1)(x^2 + x + 1) \][/tex]

Reviewing the given options:

1. [tex]\(\left(x^3-1\right)\left(x^2+x+1\right)\)[/tex]
2. [tex]\((x-1)\left(x^2-x+1\right)\)[/tex]
3. [tex]\((x-1)\left(x^2+x+1\right)\)[/tex]
4. [tex]\(\left(x^3-1\right)\left(x^2+2x+1\right)\)[/tex]

We see that the correct factored form matches option 3.

Thus, the correct answer is:

[tex]\[ \boxed{(x-1)\left(x^2+x+1\right)} \][/tex]