Answer :
To determine the new coordinates of [tex]\( B' \)[/tex] after translating the rectangle [tex]\( ABCD \)[/tex], we need to carefully follow each translation step for vertex [tex]\( B \)[/tex].
1. Identify the coordinates of vertex [tex]\( B \)[/tex]:
Vertex [tex]\( B \)[/tex] has coordinates [tex]\( B(4, -2) \)[/tex].
2. Translate 1 unit to the left:
Translating a point to the left decreases its x-coordinate by the number of units specified.
[tex]\[ x' = 4 - 1 = 3 \][/tex]
3. Translate 3 units up:
Translating a point upwards increases its y-coordinate by the number of units specified.
[tex]\[ y' = -2 + 3 = 1 \][/tex]
4. Combine the new x and y coordinates:
After the translations, the new coordinates of [tex]\( B' \)[/tex] are:
[tex]\[ B' = (3, 1) \][/tex]
Thus, the coordinates of [tex]\( B' \)[/tex] are [tex]\((3, 1)\)[/tex].
The correct answer is:
B. [tex]\((3, 1)\)[/tex]
1. Identify the coordinates of vertex [tex]\( B \)[/tex]:
Vertex [tex]\( B \)[/tex] has coordinates [tex]\( B(4, -2) \)[/tex].
2. Translate 1 unit to the left:
Translating a point to the left decreases its x-coordinate by the number of units specified.
[tex]\[ x' = 4 - 1 = 3 \][/tex]
3. Translate 3 units up:
Translating a point upwards increases its y-coordinate by the number of units specified.
[tex]\[ y' = -2 + 3 = 1 \][/tex]
4. Combine the new x and y coordinates:
After the translations, the new coordinates of [tex]\( B' \)[/tex] are:
[tex]\[ B' = (3, 1) \][/tex]
Thus, the coordinates of [tex]\( B' \)[/tex] are [tex]\((3, 1)\)[/tex].
The correct answer is:
B. [tex]\((3, 1)\)[/tex]