Let's evaluate each of the equations one by one to determine which one is true.
### Equation 1: [tex]\(1 + 1 = 1 \cdot 1\)[/tex]
- Calculate the left-hand side: [tex]\(1 + 1 = 2\)[/tex]
- Calculate the right-hand side: [tex]\(1 \cdot 1 = 1\)[/tex]
- Compare the results: [tex]\(2 \neq 1\)[/tex]
Equation 1 is false.
### Equation 2: [tex]\(10 \cdot 1 = 0 + 10\)[/tex]
- Calculate the left-hand side: [tex]\(10 \cdot 1 = 10\)[/tex]
- Calculate the right-hand side: [tex]\(0 + 10 = 10\)[/tex]
- Compare the results: [tex]\(10 = 10\)[/tex]
Equation 2 is true.
### Equation 3: [tex]\(2 \cdot 1 \cdot 0 = 2 + 1 + 0\)[/tex]
- Calculate the left-hand side: [tex]\(2 \cdot 1 \cdot 0 = 0\)[/tex]
- Calculate the right-hand side: [tex]\(2 + 1 + 0 = 3\)[/tex]
- Compare the results: [tex]\(0 \neq 3\)[/tex]
Equation 3 is false.
### Equation 4: [tex]\(4 + 1 = 4 \cdot 0\)[/tex]
- Calculate the left-hand side: [tex]\(4 + 1 = 5\)[/tex]
- Calculate the right-hand side: [tex]\(4 \cdot 0 = 0\)[/tex]
- Compare the results: [tex]\(5 \neq 0\)[/tex]
Equation 4 is false.
Out of all the given equations, only Equation 2 is true:
[tex]\[10 \cdot 1 = 0 + 10\][/tex]