Which of the following equations is true?

A. [tex]\( 1 + 1 = 1 \cdot 1 \)[/tex]

B. [tex]\( 10 \cdot 1 = 0 + 10 \)[/tex]

C. [tex]\( 2 \cdot 1 \cdot 0 = 2 + 1 + 0 \)[/tex]

D. [tex]\( 4 + 1 = 4 \cdot 0 \)[/tex]



Answer :

Let's evaluate each of the equations one by one to determine which one is true.

### Equation 1: [tex]\(1 + 1 = 1 \cdot 1\)[/tex]
- Calculate the left-hand side: [tex]\(1 + 1 = 2\)[/tex]
- Calculate the right-hand side: [tex]\(1 \cdot 1 = 1\)[/tex]
- Compare the results: [tex]\(2 \neq 1\)[/tex]

Equation 1 is false.

### Equation 2: [tex]\(10 \cdot 1 = 0 + 10\)[/tex]
- Calculate the left-hand side: [tex]\(10 \cdot 1 = 10\)[/tex]
- Calculate the right-hand side: [tex]\(0 + 10 = 10\)[/tex]
- Compare the results: [tex]\(10 = 10\)[/tex]

Equation 2 is true.

### Equation 3: [tex]\(2 \cdot 1 \cdot 0 = 2 + 1 + 0\)[/tex]
- Calculate the left-hand side: [tex]\(2 \cdot 1 \cdot 0 = 0\)[/tex]
- Calculate the right-hand side: [tex]\(2 + 1 + 0 = 3\)[/tex]
- Compare the results: [tex]\(0 \neq 3\)[/tex]

Equation 3 is false.

### Equation 4: [tex]\(4 + 1 = 4 \cdot 0\)[/tex]
- Calculate the left-hand side: [tex]\(4 + 1 = 5\)[/tex]
- Calculate the right-hand side: [tex]\(4 \cdot 0 = 0\)[/tex]
- Compare the results: [tex]\(5 \neq 0\)[/tex]

Equation 4 is false.

Out of all the given equations, only Equation 2 is true:

[tex]\[10 \cdot 1 = 0 + 10\][/tex]