Match each step to its justification to solve [tex]\( 2x + 5 = 19 \)[/tex].

1. [tex]\( 2x + 5 = 19 \)[/tex]
- Given

2. [tex]\( 2x + 5 - 5 = 19 - 5 \)[/tex]
- Subtraction property of equality

3. [tex]\( 2x = 14 \)[/tex]
- Subtract

4. [tex]\( \frac{2x}{2} = \frac{14}{2} \)[/tex]
- Division property of equality

5. [tex]\( x = 7 \)[/tex]
- Divide



Answer :

Sure, let's solve the equation [tex]\(2x + 5 = 19\)[/tex] step-by-step and match each step to its justification.

1. Start with the given equation:
[tex]\[ 2x + 5 = 19 \][/tex]
- Justification: given

2. Apply the subtraction property of equality to isolate the term containing [tex]\(x\)[/tex]:
[tex]\[ 2x + 5 - 5 = 19 - 5 \][/tex]
- Justification: subtraction property of equality

3. Simplify the equation:
[tex]\[ 2x = 14 \][/tex]
- Justification: subtract

4. Apply the division property of equality to solve for [tex]\(x\)[/tex]:
[tex]\[ 2x / 2 = 14 / 2 \][/tex]
- Justification: division property of equality

5. Simplify to find the value of [tex]\(x\)[/tex]:
[tex]\[ x = 7 \][/tex]
- Justification: divide

Here are all the steps with their justifications:

- [tex]\(2x + 5 = 19\)[/tex] → given
- [tex]\(2x + 5 - 5 = 19 - 5\)[/tex] → subtraction property of equality
- [tex]\(2x = 14\)[/tex] → subtract
- [tex]\(2x / 2 = 14 / 2\)[/tex] → division property of equality
- [tex]\(x = 7\)[/tex] → divide