What is the value of the trigonometric function? Enter your answer in simplest radical form.

[tex]\[
\begin{array}{l}
\tan \left(-\frac{7 \pi}{6}\right)=\square \\
\csc \left(\frac{\pi}{4}\right)=\square \\
\cos \left(\frac{17 \pi}{3}\right)=\square
\end{array}
\][/tex]



Answer :

To find the values of these trigonometric functions, we need to carefully analyze each angle and its corresponding function. Let's proceed step-by-step.

### Calculating [tex]\(\tan \left(-\frac{7 \pi}{6}\right)\)[/tex]

1. Identify the Reference Angle:
- The angle [tex]\(-\frac{7\pi}{6}\)[/tex] is in the third quadrant because the angle is more than [tex]\(-\pi\)[/tex] and less than [tex]\(-3\pi/2\)[/tex].

2. Simplify the Angle:
- We can add [tex]\(2\pi\)[/tex] to normalize the angle within a standard cycle:
[tex]\[ -\frac{7\pi}{6} + 2\pi = -\frac{7\pi}{6} + \frac{12\pi}{6} = \frac{5\pi}{6} \][/tex]

3. Evaluate Tangent in the Third Quadrant:
- The reference angle is [tex]\(\frac{\pi}{6}\)[/tex] and the tangent of [tex]\(\pi/6\)[/tex] is [tex]\(1/\sqrt{3}\)[/tex], but we need to consider the signs.
- In the third quadrant, tangent is positive:
[tex]\[ \tan\left(-\frac{7\pi}{6}\right) = \tan\left(\frac{5\pi}{6}\right) = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3} \][/tex]

So,
[tex]\[ \tan \left(-\frac{7 \pi}{6}\right) = -\frac{\sqrt{3}}{3} \][/tex]

### Calculating [tex]\(\csc \left(\frac{\pi}{4}\right)\)[/tex]

1. Definition of Cosecant:
- [tex]\(\csc(x) = \frac{1}{\sin(x)}\)[/tex]

2. Sine of [tex]\(\frac{\pi}{4}\)[/tex]:
[tex]\[ \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]

3. Calculate Cosecant:
[tex]\[ \csc\left(\frac{\pi}{4}\right) = \frac{1}{\sin\left(\frac{\pi}{4}\right)} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2} \][/tex]

So,
[tex]\[ \csc\left(\frac{\pi}{4}\right) = \sqrt{2} \][/tex]

### Calculating [tex]\(\cos \left(\frac{17 \pi}{3}\right)\)[/tex]

1. Simplify the Angle to a Standard Range:
- Divide [tex]\(\frac{17\pi}{3}\)[/tex] by [tex]\(2\pi\)[/tex]:
[tex]\[ \frac{17\pi}{3} \text{ mod } 2\pi = \frac{17\pi}{3} - 2\pi \left\lfloor \frac{17\pi}{3} / 2\pi \right\rfloor \][/tex]
- The integer division of [tex]\(\frac{17\pi}{3}\)[/tex] by [tex]\(2\pi\)[/tex] is:
[tex]\[ \frac{17}{3 \cdot 2} = \frac{17}{6} \][/tex]
- [tex]\(\left\lfloor \frac{17}{6} \right\rfloor = 2\)[/tex]
- Therefore, the angle is:
[tex]\[ \frac{17\pi}{3} - 2\pi \cdot 2 = \frac{17\pi}{3} - \frac{12\pi}{3} = \frac{5\pi}{3} \][/tex]

2. Evaluate Cosine in the First Quadrant:
- The reference angle for [tex]\(\frac{5\pi}{3}\)[/tex] is:
[tex]\[ 2\pi - \frac{5\pi}{3} = \frac{\pi}{3} \][/tex]
- The cosine of [tex]\(\frac{\pi}{3}\)[/tex] is:
[tex]\[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \][/tex]

So,
[tex]\[ \cos\left(\frac{17\pi}{3}\right) = \frac{1}{2} \][/tex]

### Final Answer
[tex]\[ \begin{array}{l} \tan \left(-\frac{7 \pi}{6}\right)=-\frac{\sqrt{3}}{3} \\ \csc \left(\frac{\pi}{4}\right)=\sqrt{2} \\ \cos \left(\frac{17 \pi}{3}\right)=\frac{1}{2} \end{array} \][/tex]