Complete parts (a) through (d) below.

The table describes results from groups of 8 births from 8 different sets of parents. The random variable [tex]\( x \)[/tex] represents the number of girls among 8 children.

Click the icon to view the table.

a. Find the probability of getting exactly 1 girl in 8 births.

[tex]\(\square\)[/tex] (Type an integer or a decimal. Do not round.)

[tex]\[
\begin{array}{c|c}
\hline
\text{Number of Girls } (x) & P(x) \\
\hline
0 & 0.004 \\
\hline
1 & 0.009 \\
\hline
2 & 0.105 \\
\hline
3 & 0.193 \\
\hline
4 & 0.378 \\
\hline
5 & 0.193 \\
\hline
6 & 0.105 \\
\hline
7 & 0.009 \\
\hline
8 & 0.004 \\
\hline
\end{array}
\][/tex]



Answer :

To determine the probability of getting exactly 1 girl in 8 births, we utilize the provided table that lists the probability [tex]\( P(x) \)[/tex] for each possible value of the number of girls [tex]\( x \)[/tex] among 8 children.

The table indicates the following values:

[tex]\[ \begin{array}{c|c} \hline \text{Number of Girls} \, (x) & P(x) \\ \hline 0 & 0.004 \\ \hline 1 & 0.009 \\ \hline 2 & 0.105 \\ \hline 3 & 0.193 \\ \hline 4 & 0.378 \\ \hline 5 & 0.193 \\ \hline 6 & 0.105 \\ \hline 7 & 0.009 \\ \hline 8 & 0.004 \\ \hline \end{array} \][/tex]

We are interested in the probability of [tex]\( x = 1 \)[/tex].

From the table, when [tex]\( x = 1 \)[/tex], the probability [tex]\( P(x) \)[/tex] is:

[tex]\[ P(1) = 0.009 \][/tex]

Therefore, the probability of getting exactly 1 girl in 8 births is:

[tex]\[ 0.009 \][/tex]