Answer :
To determine the probability of getting exactly 1 girl in 8 births, we utilize the provided table that lists the probability [tex]\( P(x) \)[/tex] for each possible value of the number of girls [tex]\( x \)[/tex] among 8 children.
The table indicates the following values:
[tex]\[ \begin{array}{c|c} \hline \text{Number of Girls} \, (x) & P(x) \\ \hline 0 & 0.004 \\ \hline 1 & 0.009 \\ \hline 2 & 0.105 \\ \hline 3 & 0.193 \\ \hline 4 & 0.378 \\ \hline 5 & 0.193 \\ \hline 6 & 0.105 \\ \hline 7 & 0.009 \\ \hline 8 & 0.004 \\ \hline \end{array} \][/tex]
We are interested in the probability of [tex]\( x = 1 \)[/tex].
From the table, when [tex]\( x = 1 \)[/tex], the probability [tex]\( P(x) \)[/tex] is:
[tex]\[ P(1) = 0.009 \][/tex]
Therefore, the probability of getting exactly 1 girl in 8 births is:
[tex]\[ 0.009 \][/tex]
The table indicates the following values:
[tex]\[ \begin{array}{c|c} \hline \text{Number of Girls} \, (x) & P(x) \\ \hline 0 & 0.004 \\ \hline 1 & 0.009 \\ \hline 2 & 0.105 \\ \hline 3 & 0.193 \\ \hline 4 & 0.378 \\ \hline 5 & 0.193 \\ \hline 6 & 0.105 \\ \hline 7 & 0.009 \\ \hline 8 & 0.004 \\ \hline \end{array} \][/tex]
We are interested in the probability of [tex]\( x = 1 \)[/tex].
From the table, when [tex]\( x = 1 \)[/tex], the probability [tex]\( P(x) \)[/tex] is:
[tex]\[ P(1) = 0.009 \][/tex]
Therefore, the probability of getting exactly 1 girl in 8 births is:
[tex]\[ 0.009 \][/tex]