Write an antiderivative [tex]\( F(x) \)[/tex] of the function [tex]\( f(x) = \frac{2}{x^2} + 8x^6 \)[/tex].

Antiderivative of [tex]\( f(x) \)[/tex]:
[tex]\[ F(x) = \square + C \][/tex]

Input [tex]\( x^{\wedge}2 \)[/tex] for [tex]\( x^2 \)[/tex], [tex]\( x^{\wedge}3 \)[/tex] for [tex]\( x^3 \)[/tex].

Coefficients in your answer can be fractions or decimals.



Answer :

To find the antiderivative [tex]\( F(x) \)[/tex] of the function [tex]\( f(x) = \frac{2}{x^2} + 8 \cdot x^6 \)[/tex], we follow these steps:

1. Break down the function into simpler parts:

[tex]\[ f(x) = \frac{2}{x^2} + 8 \cdot x^6 \][/tex]

2. Rewrite the function in terms of exponents:

[tex]\[ f(x) = 2 \cdot x^{-2} + 8 \cdot x^6 \][/tex]

3. Integrate each term separately:

- For [tex]\( 2 \cdot x^{-2} \)[/tex]:

The antiderivative of [tex]\( x^{-n} \)[/tex] where [tex]\( n \neq 1 \)[/tex] is [tex]\( \frac{x^{-n+1}}{-n+1} \)[/tex].

Here, [tex]\( n = 2 \)[/tex], so:
[tex]\[ \int 2 \cdot x^{-2} \, dx = 2 \cdot \frac{x^{-2+1}}{-2+1} = 2 \cdot \frac{x^{-1}}{-1} = -2 \cdot x^{-1} = -\frac{2}{x} \][/tex]

- For [tex]\( 8 \cdot x^6 \)[/tex]:

The antiderivative of [tex]\( x^n \)[/tex] is [tex]\( \frac{x^{n+1}}{n+1} \)[/tex].

Here, [tex]\( n = 6 \)[/tex], so:
[tex]\[ \int 8 \cdot x^6 \, dx = 8 \cdot \frac{x^{6+1}}{6+1} = 8 \cdot \frac{x^7}{7} = \frac{8x^7}{7} \][/tex]

4. Combine the results:

[tex]\[ F(x) = \left( -\frac{2}{x} \right) + \left( \frac{8x^7}{7} \right) \][/tex]

5. Add the constant of integration [tex]\( C \)[/tex]:

[tex]\[ F(x) = \frac{8 \cdot x^7}{7} - \frac{2}{x} + C \][/tex]

So, the antiderivative of [tex]\( f(x)=\frac{2}{x^2}+8 \cdot x^6 \)[/tex] is:

[tex]\[ F(x) = \boxed{\frac{8 \cdot x^7}{7} - \frac{2}{x}} + C \][/tex]

Other Questions