Given the matrix [tex]\( M \)[/tex]:

[tex]\[ M = \begin{pmatrix}
1 & 2 \\
-3 & -7
\end{pmatrix} \][/tex]

1. Find [tex]\( M^{-1} \)[/tex].

[tex]\[ M^{-1} = \boxed{\phantom{M^{-1}}} \][/tex]

2. Find the value in the first row and first column of the product [tex]\( M^{-1}M \)[/tex] using matrix multiplication. Select the correct expression below and simplify your answer:

A. [tex]\((-3 \cdot 2) + (-1 \cdot -7) = \boxed{\phantom{answer}}\)[/tex]
B. [tex]\((7 \cdot 1) + (2 \cdot -3) = \boxed{\phantom{answer}}\)[/tex]
C. [tex]\((-3 \cdot 1) + (-1 \cdot -3) = \boxed{\phantom{answer}}\)[/tex]
D. [tex]\((7 \cdot 2) + (2 \cdot -7) = \boxed{\phantom{answer}}\)[/tex]

3. Find the value in the first row and second column of the product [tex]\( M^{-1}M \)[/tex] using matrix multiplication. Select the correct expression below and simplify your answer:

A. [tex]\((7 \cdot 1) + (2 \cdot -3) = \boxed{\phantom{answer}}\)[/tex]
B. [tex]\((7 \cdot 2) + (2 \cdot -7) = \boxed{\phantom{answer}}\)[/tex]



Answer :

Let's work through the problem step by step.

1. Given Matrix [tex]\( M \)[/tex]:
[tex]\[ M = \begin{pmatrix} 1 & 2 \\ -3 & -7 \end{pmatrix} \][/tex]

2. Find the Inverse of Matrix [tex]\( M \)[/tex], denoted as [tex]\( M^{-1} \)[/tex]:

The inverse of a [tex]\(2 \times 2\)[/tex] matrix
[tex]\[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
is calculated using the formula:
[tex]\[ \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]

Applying this formula to our matrix [tex]\( M \)[/tex]:
[tex]\[ a = 1, \, b = 2, \, c = -3, \, d = -7 \][/tex]

Then,
[tex]\[ ad - bc = (1 \cdot -7) - (2 \cdot -3) = -7 + 6 = -1 \][/tex]

The inverse matrix [tex]\( M^{-1} \)[/tex] is:
[tex]\[ M^{-1} = \frac{1}{-1} \begin{pmatrix} -7 & -2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ -3 & -1 \end{pmatrix} \][/tex]

3. Find the product [tex]\( M^{-1}M \)[/tex]:

Next, we take the product of [tex]\( M^{-1} \)[/tex] and [tex]\( M \)[/tex]:
[tex]\[ M^{-1}M = \begin{pmatrix} 7 & 2 \\ -3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -3 & -7 \end{pmatrix} \][/tex]

4. Matrix Multiplication:

To find the element in the first row and first column, we compute:
[tex]\[ (7 \cdot 1) + (2 \cdot -3) = 7 + (-6) = 1 \\ \][/tex]

To find the element in the first row and second column, we compute:
[tex]\[ (7 \cdot 2) + (2 \cdot -7) = 14 + (-14) = 0 \][/tex]

5. Summary of Results:

- The element in the first row and first column of [tex]\( M^{-1}M \)[/tex]:
[tex]\[ 1 \][/tex]
The corresponding correct expression is:
B. [tex]\( (7 \cdot 1) + (2 \cdot -3) = 1 \)[/tex]

- The element in the first row and second column of[tex]\( M^{-1}M \)[/tex]:
[tex]\[ 0 \][/tex]
The corresponding correct expression is:
D. [tex]\( (7 \cdot 2) + (2 \cdot -7) = 0 \)[/tex]