Solve [tex]\(x^2 - 16x + 60 = -12\)[/tex] by completing the steps.

1. Subtract 60 from each side of the equation:
[tex]\[ x^2 - 16x + 60 - 60 = -12 - 60 \][/tex]
[tex]\[ x^2 - 16x = -72 \][/tex]

2. Complete the square:
[tex]\[ x^2 - 16x + 64 = -72 + 64 \][/tex]
[tex]\[ x^2 - 16x + 64 = -8 \][/tex]
[tex]\[ (x - 8)^2 = -8 \][/tex]

3. Take the square root of both sides to get the solutions:
[tex]\[ x - 8 = \pm \sqrt{-8} \][/tex]
[tex]\[ x - 8 = \pm 2i\sqrt{2} \][/tex]
[tex]\[ x = 8 \pm 2i\sqrt{2} \][/tex]



Answer :

Sure, let's solve the equation [tex]\( x^2 - 16x + 60 = -12 \)[/tex] by completing the square step-by-step.

### Step 1: Subtract 60 from each side

First, let's isolate the quadratic term by moving the constant term on the left side to the other side:

[tex]\[ x^2 - 16x + 60 - 60 = -12 - 60 \][/tex]

Simplify:

[tex]\[ x^2 - 16x = -72 \][/tex]

### Step 2: Complete the square

To complete the square, we need to add and subtract a specific value on the left-hand side to make it a perfect square trinomial. The value to add and subtract is [tex]\(\left(\frac{b}{2}\right)^2\)[/tex], where [tex]\(b\)[/tex] is the coefficient of [tex]\(x\)[/tex]. Here, [tex]\(b = -16\)[/tex], so:

[tex]\[ \left(\frac{-16}{2}\right)^2 = 64 \][/tex]

Add and subtract 64 from both sides:

[tex]\[ x^2 - 16x + 64 - 64 = -72 + 64 \][/tex]

This simplifies to:

[tex]\[ x^2 - 16x + 64 = -8 \][/tex]

### Step 3: Write the left side as a squared term

Now we can rewrite the left-hand side as a perfect square trinomial:

[tex]\[ (x - 8)^2 = -8 \][/tex]

### Step 4: Take the square root of both sides

To solve [tex]\( (x - 8)^2 = -8 \)[/tex], take the square root of both sides:

[tex]\[ x - 8 = \pm \sqrt{-8} \][/tex]

Recall that [tex]\(\sqrt{-8} = \sqrt{8} \cdot i\)[/tex], where [tex]\(i\)[/tex] is the imaginary unit:

[tex]\[ x - 8 = \pm \sqrt{8} \cdot i \][/tex]

So,

[tex]\[ x = 8 \pm \sqrt{8} \cdot i \][/tex]

### Solutions

The solutions to the equation are:

[tex]\[ x_1 = 8 + \sqrt{8} \cdot i \][/tex]
[tex]\[ x_2 = 8 - \sqrt{8} \cdot i \][/tex]

Numerically,

[tex]\(\sqrt{8} \approx 2.8284271247461903\)[/tex], so:

[tex]\[ x_1 \approx 8 + 2.8284271247461903i \][/tex]
[tex]\[ x_2 \approx 8 - 2.8284271247461903i \][/tex]

Thus, the solutions are approximately:

[tex]\[ x_1 \approx (8 + 2.8284271247461903i) \][/tex]
[tex]\[ x_2 \approx (8 - 2.8284271247461903i) \][/tex]