Answer :
To solve the system of equations:
[tex]\[ \left\{\begin{array}{l} 7x - 3y = 27 \\ 5x + y = 35 \end{array}\right. \][/tex]
we will use the method of elimination. Follow these steps:
1. Rewrite the equations:
[tex]\[ 7x - 3y = 27 \quad \text{(Equation 1)} \][/tex]
[tex]\[ 5x + y = 35 \quad \text{(Equation 2)} \][/tex]
2. Eliminate [tex]\(y\)[/tex] by making the coefficients of [tex]\(y\)[/tex] in both equations opposites.
- To do that, multiply Equation 2 by 3, so the coefficient of [tex]\(y\)[/tex] will be [tex]\(3\)[/tex]:
[tex]\[ 3(5x + y) = 3 \cdot 35 \][/tex]
Which simplifies to:
[tex]\[ 15x + 3y = 105 \quad \text{(Modified Equation 2)} \][/tex]
3. Add Equation 1 and the Modified Equation 2:
[tex]\[ (7x - 3y) + (15x + 3y) = 27 + 105 \][/tex]
Simplify this to get:
[tex]\[ 7x + 15x = 132 \][/tex]
[tex]\[ 22x = 132 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{132}{22} \][/tex]
[tex]\[ x = 6 \][/tex]
5. Substitute [tex]\(x = 6\)[/tex] back into one of the original equations to find [tex]\(y\)[/tex]. We will use Equation 2:
[tex]\[ 5x + y = 35 \][/tex]
Substitute [tex]\(x = 6\)[/tex]:
[tex]\[ 5(6) + y = 35 \][/tex]
[tex]\[ 30 + y = 35 \][/tex]
Solve for [tex]\(y\)[/tex]:
[tex]\[ y = 35 - 30 \][/tex]
[tex]\[ y = 5 \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ x = 6, \quad y = 5 \][/tex]
[tex]\[ \left\{\begin{array}{l} 7x - 3y = 27 \\ 5x + y = 35 \end{array}\right. \][/tex]
we will use the method of elimination. Follow these steps:
1. Rewrite the equations:
[tex]\[ 7x - 3y = 27 \quad \text{(Equation 1)} \][/tex]
[tex]\[ 5x + y = 35 \quad \text{(Equation 2)} \][/tex]
2. Eliminate [tex]\(y\)[/tex] by making the coefficients of [tex]\(y\)[/tex] in both equations opposites.
- To do that, multiply Equation 2 by 3, so the coefficient of [tex]\(y\)[/tex] will be [tex]\(3\)[/tex]:
[tex]\[ 3(5x + y) = 3 \cdot 35 \][/tex]
Which simplifies to:
[tex]\[ 15x + 3y = 105 \quad \text{(Modified Equation 2)} \][/tex]
3. Add Equation 1 and the Modified Equation 2:
[tex]\[ (7x - 3y) + (15x + 3y) = 27 + 105 \][/tex]
Simplify this to get:
[tex]\[ 7x + 15x = 132 \][/tex]
[tex]\[ 22x = 132 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{132}{22} \][/tex]
[tex]\[ x = 6 \][/tex]
5. Substitute [tex]\(x = 6\)[/tex] back into one of the original equations to find [tex]\(y\)[/tex]. We will use Equation 2:
[tex]\[ 5x + y = 35 \][/tex]
Substitute [tex]\(x = 6\)[/tex]:
[tex]\[ 5(6) + y = 35 \][/tex]
[tex]\[ 30 + y = 35 \][/tex]
Solve for [tex]\(y\)[/tex]:
[tex]\[ y = 35 - 30 \][/tex]
[tex]\[ y = 5 \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ x = 6, \quad y = 5 \][/tex]