Consider a triangle like the one below. Suppose that A= 106 degrees, C= 38, degrees and a= 12. (The figure is not drawn to scale.) Solve the triangle. Round your answers to the nearest tenth. If there is more than one solution, use the button labeled "or".



Answer :

To solve the triangle given

=

10

6

A=106

,

=

3

8

C=38

, and

=

12

a=12:

Find angle

B using the triangle sum theorem:

=

18

0

=

18

0

10

6

3

8

=

3

6

B=180

−A−C=180

−106

−38

=36

Apply the Law of Sines to find

b:

sin

=

sin

sinA

a

=

sinB

b

Substitute the known values:

12

sin

10

6

=

sin

3

6

sin106

12

=

sin36

b

Calculate

sin

10

6

sin106

 (since

sin

10

6

=

sin

(

18

0

10

6

)

=

sin

7

4

sin106

=sin(180

−106

)=sin74

):

12

sin

7

4

=

sin

3

6

sin74

12

=

sin36

b

Solve for

b:

=

12

sin

3

6

sin

7

4

b=

sin74

12⋅sin36

Using a calculator:

sin

3

6

0.5878

,

sin

7

4

0.9613

sin36

≈0.5878,sin74

≈0.9613

12

0.5878

0.9613

7.36

b≈

0.9613

12⋅0.5878

≈7.36

So,

7.4

b≈7.4.

Find side

c using the Law of Sines:

sin

=

sin

sinA

a

=

sinC

c

Substitute the known values:

12

sin

10

6

=

sin

3

8

sin106

12

=

sin38

c

Calculate

sin

10

6

sin106

:

12

sin

7

4

=

sin

3

8

sin74

12

=

sin38

c

Solve for

c:

=

12

sin

3

8

sin

7

4

c=

sin74

12⋅sin38

Using a calculator:

sin

3

8

0.6157

sin38

≈0.6157

12

0.6157

0.9613

7.7

c≈

0.9613

12⋅0.6157

≈7.7

So,

7.7

c≈7.7.

Therefore, the sides of the triangle are approximately

=

12

a=12,

7.4

b≈7.4, and

7.7

c≈7.7.

Answer:

Step-by-step explanation: