Answer :
Para resolver la pregunta, necesitamos comenzar entendiendo la ecuación dada y cómo se puede manipular para compararla con las opciones proporcionadas.
La ecuación dada es:
[tex]\[ x^2 - 21 = 15 \][/tex]
### Paso 1: Resolver la ecuación para [tex]\( x \)[/tex]
Primero, despejamos [tex]\( x \)[/tex]:
[tex]\[ x^2 - 21 = 15 \][/tex]
Sumamos 21 en ambos lados de la ecuación:
[tex]\[ x^2 = 15 + 21 \][/tex]
[tex]\[ x^2 = 36 \][/tex]
Ahora, tomamos la raíz cuadrada en ambos lados:
[tex]\[ x = \pm \sqrt{36} \][/tex]
[tex]\[ x = \pm 6 \][/tex]
Podemos ver que [tex]\( x = 6 \)[/tex] o [tex]\( x = -6 \)[/tex].
### Paso 2: Análisis de las opciones
Vamos a analizar cada una de las opciones provistas para ver cuál se alinea con la ecuación resuelta.
#### Opción A: El cuadrado de un número menos 21 es igual a 15.
Verificamos si esto es cierto para [tex]\( x = 6 \)[/tex] y [tex]\( x = -6 \)[/tex]:
- Para [tex]\( x = 6 \)[/tex]:
[tex]\[ 6^2 - 21 = 36 - 21 = 15 \][/tex] (Verdadero)
- Para [tex]\( x = -6 \)[/tex]:
[tex]\[ (-6)^2 - 21 = 36 - 21 = 15 \][/tex] (Verdadero)
Entonces, la opción A es correcta para ambos valores de [tex]\( x \)[/tex].
#### Opción B: El doble de un número menos 21 es igual a 15.
Verificamos si esto es cierto para [tex]\( x = 6 \)[/tex] y [tex]\( x = -6 \)[/tex]:
- Para [tex]\( x = 6 \)[/tex]:
[tex]\[ 2 \cdot 6 - 21 = 12 - 21 = -9 \][/tex] (Falso)
- Para [tex]\( x = -6 \)[/tex]:
[tex]\[ 2 \cdot -6 - 21 = -12 - 21 = -33 \][/tex] (Falso)
Entonces, la opción B es incorrecta.
#### Opción C: Un número menos 21, y esto elevado al cuadrado, es igual a 15.
Verificamos si esto es cierto para [tex]\( x = 6 \)[/tex] y [tex]\( x = -6 \)[/tex]:
- Para [tex]\( x = 6 \)[/tex]:
[tex]\[ (6 - 21)^2 = (-15)^2 = 225 \][/tex] (Falso)
- Para [tex]\( x = -6 \)[/tex]:
[tex]\[ (-6 - 21)^2 = (-27)^2 = 729 \][/tex] (Falso)
Entonces, la opción C es incorrecta.
#### Opción D: Resto 21 a un número, lo elevo al cuadrado y obtengo 15.
Verificamos si esto es cierto para [tex]\( x = 6 \)[/tex] y [tex]\( x = -6 \)[/tex]:
- Para [tex]\( x = 6 \)[/tex]:
[tex]\[ (6 - 21)^2 = (-15)^2 = 225 \][/tex] (Falso)
- Para [tex]\( x = -6 \)[/tex]:
[tex]\[ (-6 - 21)^2 = (-27)^2 = 729 \][/tex] (Falso)
Entonces, la opción D es incorrecta.
### Paso 3: Conclusión
Después de analizar cada una de las opciones, la opción correcta es:
A) El cuadrado de un número menos 21 es igual a 15.
La ecuación dada es:
[tex]\[ x^2 - 21 = 15 \][/tex]
### Paso 1: Resolver la ecuación para [tex]\( x \)[/tex]
Primero, despejamos [tex]\( x \)[/tex]:
[tex]\[ x^2 - 21 = 15 \][/tex]
Sumamos 21 en ambos lados de la ecuación:
[tex]\[ x^2 = 15 + 21 \][/tex]
[tex]\[ x^2 = 36 \][/tex]
Ahora, tomamos la raíz cuadrada en ambos lados:
[tex]\[ x = \pm \sqrt{36} \][/tex]
[tex]\[ x = \pm 6 \][/tex]
Podemos ver que [tex]\( x = 6 \)[/tex] o [tex]\( x = -6 \)[/tex].
### Paso 2: Análisis de las opciones
Vamos a analizar cada una de las opciones provistas para ver cuál se alinea con la ecuación resuelta.
#### Opción A: El cuadrado de un número menos 21 es igual a 15.
Verificamos si esto es cierto para [tex]\( x = 6 \)[/tex] y [tex]\( x = -6 \)[/tex]:
- Para [tex]\( x = 6 \)[/tex]:
[tex]\[ 6^2 - 21 = 36 - 21 = 15 \][/tex] (Verdadero)
- Para [tex]\( x = -6 \)[/tex]:
[tex]\[ (-6)^2 - 21 = 36 - 21 = 15 \][/tex] (Verdadero)
Entonces, la opción A es correcta para ambos valores de [tex]\( x \)[/tex].
#### Opción B: El doble de un número menos 21 es igual a 15.
Verificamos si esto es cierto para [tex]\( x = 6 \)[/tex] y [tex]\( x = -6 \)[/tex]:
- Para [tex]\( x = 6 \)[/tex]:
[tex]\[ 2 \cdot 6 - 21 = 12 - 21 = -9 \][/tex] (Falso)
- Para [tex]\( x = -6 \)[/tex]:
[tex]\[ 2 \cdot -6 - 21 = -12 - 21 = -33 \][/tex] (Falso)
Entonces, la opción B es incorrecta.
#### Opción C: Un número menos 21, y esto elevado al cuadrado, es igual a 15.
Verificamos si esto es cierto para [tex]\( x = 6 \)[/tex] y [tex]\( x = -6 \)[/tex]:
- Para [tex]\( x = 6 \)[/tex]:
[tex]\[ (6 - 21)^2 = (-15)^2 = 225 \][/tex] (Falso)
- Para [tex]\( x = -6 \)[/tex]:
[tex]\[ (-6 - 21)^2 = (-27)^2 = 729 \][/tex] (Falso)
Entonces, la opción C es incorrecta.
#### Opción D: Resto 21 a un número, lo elevo al cuadrado y obtengo 15.
Verificamos si esto es cierto para [tex]\( x = 6 \)[/tex] y [tex]\( x = -6 \)[/tex]:
- Para [tex]\( x = 6 \)[/tex]:
[tex]\[ (6 - 21)^2 = (-15)^2 = 225 \][/tex] (Falso)
- Para [tex]\( x = -6 \)[/tex]:
[tex]\[ (-6 - 21)^2 = (-27)^2 = 729 \][/tex] (Falso)
Entonces, la opción D es incorrecta.
### Paso 3: Conclusión
Después de analizar cada una de las opciones, la opción correcta es:
A) El cuadrado de un número menos 21 es igual a 15.