Ethyne ([tex]$C_2H_2(g)$[/tex], [tex]$\Delta H_f = 226.77$[/tex] kJ/mol) undergoes complete combustion in the presence of oxygen to produce carbon dioxide ([tex]$CO_2(g)$[/tex], [tex]$\Delta H_f = -393.5$[/tex] kJ/mol) and water ([tex]$H_2O(g)$[/tex], [tex]$\Delta H_f = -241.82$[/tex] kJ/mol) according to the equation below:

[tex]\[ 2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g) \][/tex]

What is the enthalpy of combustion (per mole) of [tex]$C_2H_2(g)$[/tex]? Use

[tex]\[
\Delta H_{\text{comb}} = \sum\left(\Delta H_{\text{f, products}}\right) - \sum\left(\Delta H_{\text{f, reactants}}\right)
\][/tex]

A. [tex]$-2511.2$[/tex] kJ/mol

B. [tex]$-1255.6$[/tex] kJ/mol

C. [tex]$-862.1$[/tex] kJ/mol

D. [tex]$-431.0$[/tex] kJ/mol



Answer :

To determine the enthalpy of combustion (per mole) of ethyne [tex]\((\text{C}_2\text{H}_2(g))\)[/tex], we need to follow these steps:

1. Identify the given enthalpy values for reactants and products:
- Enthalpy of formation of ethyne ([tex]\(\text{C}_2\text{H}_2\)[/tex]): [tex]\( \Delta H_{\text{C}_2\text{H}_2} = 226.77\)[/tex] kJ/mol
- Enthalpy of formation of carbon dioxide ([tex]\(\text{CO}_2\)[/tex]): [tex]\( \Delta H_{\text{CO}_2} = -393.5\)[/tex] kJ/mol
- Enthalpy of formation of water ([tex]\(\text{H}_2\text{O(g)}}\)[/tex]): [tex]\( \Delta H_{\text{H}_2\text{O}} = -241.82\)[/tex] kJ/mol

2. Write down the balanced chemical equation:
[tex]\[ 2 \text{C}_2\text{H}_2 (g) + 5 \text{O}_2 (g) \rightarrow 4 \text{CO}_2 (g) + 2 \text{H}_2\text{O (g)} \][/tex]

3. Calculate the total enthalpy of products by summing the enthalpies of formation multiplied by their respective coefficients:
[tex]\[ \text{Enthalpy of products} = (4 \text{ mol} \times \Delta H_{\text{CO}_2}) + (2 \text{ mol} \times \Delta H_{\text{H}_2\text{O}}) \][/tex]
[tex]\[ \text{Enthalpy of products} = (4 \times -393.5\ \text{kJ/mol}) + (2 \times -241.82\ \text{kJ/mol}) \][/tex]

4. Calculate the total enthalpy of reactants by summing the enthalpies of formation multiplied by their respective coefficients:
[tex]\[ \text{Enthalpy of reactants} = 2 \text{ mol} \times \Delta H_{\text{C}_2\text{H}_2} \][/tex]
[tex]\[ \text{Enthalpy of reactants} = 2 \times 226.77\ \text{kJ/mol} \][/tex]

5. Apply the enthalpy change formula for the reaction:
[tex]\[ \Delta H_{\text{combustion}} = \text{Enthalpy of products} - \text{Enthalpy of reactants} \][/tex]
Using our values:
[tex]\[ \Delta H_{\text{combustion}} = (4 \times -393.5 + 2 \times -241.82) - (2 \times 226.77) \][/tex]
[tex]\[ \Delta H_{\text{combustion}} = (-1574 - 483.64) - 453.54 \][/tex]
[tex]\[ \Delta H_{\text{combustion}} = -2057.64 - 453.54 \][/tex]
[tex]\[ \Delta H_{\text{combustion}} = -2511.18\ \text{kJ} \][/tex]

6. Find the enthalpy of combustion per mole of [tex]\(\text{C}_2\text{H}_2\)[/tex]:
Since the combustion equation is for 2 moles of [tex]\(\text{C}_2\text{H}_2\)[/tex], we need to divide the total enthalpy change by 2 to find it per mole:
[tex]\[ \Delta H_{\text{combustion per mole}} = \frac{\Delta H_{\text{combustion total}}}{2} \][/tex]
[tex]\[ \Delta H_{\text{combustion per mole}} = \frac{-2511.18\ \text{kJ}}{2} \][/tex]
[tex]\[ \Delta H_{\text{combustion per mole}} = -1255.59\ \text{kJ/mol} \][/tex]

Therefore, the enthalpy of combustion (per mole) of [tex]\(\text{C}_2\text{H}_2 (g)\)[/tex] is [tex]\(-1255.6\ \text{kJ/mol}\)[/tex]. The correct choice from the given options is:
[tex]\[ -1255.6\ \text{kJ/mol} \][/tex]