To solve for [tex]\( f(x) \)[/tex] when [tex]\( x = 8 \)[/tex], we need to substitute [tex]\( x = 8 \)[/tex] into the given function [tex]\( f(x) = 6x - 4 \)[/tex].
Here's the step-by-step solution:
1. Start with the given function:
[tex]\[
f(x) = 6x - 4
\][/tex]
2. Substitute [tex]\( x = 8 \)[/tex] into the function:
[tex]\[
f(8) = 6(8) - 4
\][/tex]
3. First, perform the multiplication:
[tex]\[
6 \times 8 = 48
\][/tex]
4. Then, subtract 4 from the result:
[tex]\[
48 - 4 = 44
\][/tex]
Therefore, [tex]\( f(8) = 44 \)[/tex].
So, when [tex]\( x = 8 \)[/tex], [tex]\( f(x) = 44 \)[/tex].
Among the given choices, the correct answer is:
[tex]\[
\boxed{44}
\][/tex]