Answer :
Let's solve the given expression step-by-step.
We are given the expression:
[tex]$ \frac{\sqrt{1} \times \frac{1}{3}}{18} $[/tex]
1. Calculate the value of the square root:
[tex]\(\sqrt{1}\)[/tex] is equal to 1, because the square root of 1 is 1.
So, now our expression looks like this:
[tex]$ \frac{1 \times \frac{1}{3}}{18} $[/tex]
2. Multiply the numerator terms:
We have [tex]\(1 \times \frac{1}{3}\)[/tex]. Multiplying any number by 1 gives the number itself, so:
[tex]$ 1 \times \frac{1}{3} = \frac{1}{3} $[/tex]
Now our expression is:
[tex]$ \frac{\frac{1}{3}}{18} $[/tex]
3. Divide the fraction:
Dividing by 18 means multiplying by the reciprocal of 18. The reciprocal of 18 is [tex]\(\frac{1}{18}\)[/tex]:
[tex]$ \frac{1}{3} \times \frac{1}{18} $[/tex]
4. Perform the multiplication:
Multiply the numerators and the denominators:
[tex]$ \frac{1 \times 1}{3 \times 18} = \frac{1}{54} $[/tex]
Now we have the final result:
[tex]$ \frac{\frac{\sqrt{1} \times \frac{1}{3}}{18}} = \frac{1}{54} \approx 0.018518518518518517 $[/tex]
So, the value of the expression is approximately 0.0185.
We are given the expression:
[tex]$ \frac{\sqrt{1} \times \frac{1}{3}}{18} $[/tex]
1. Calculate the value of the square root:
[tex]\(\sqrt{1}\)[/tex] is equal to 1, because the square root of 1 is 1.
So, now our expression looks like this:
[tex]$ \frac{1 \times \frac{1}{3}}{18} $[/tex]
2. Multiply the numerator terms:
We have [tex]\(1 \times \frac{1}{3}\)[/tex]. Multiplying any number by 1 gives the number itself, so:
[tex]$ 1 \times \frac{1}{3} = \frac{1}{3} $[/tex]
Now our expression is:
[tex]$ \frac{\frac{1}{3}}{18} $[/tex]
3. Divide the fraction:
Dividing by 18 means multiplying by the reciprocal of 18. The reciprocal of 18 is [tex]\(\frac{1}{18}\)[/tex]:
[tex]$ \frac{1}{3} \times \frac{1}{18} $[/tex]
4. Perform the multiplication:
Multiply the numerators and the denominators:
[tex]$ \frac{1 \times 1}{3 \times 18} = \frac{1}{54} $[/tex]
Now we have the final result:
[tex]$ \frac{\frac{\sqrt{1} \times \frac{1}{3}}{18}} = \frac{1}{54} \approx 0.018518518518518517 $[/tex]
So, the value of the expression is approximately 0.0185.