To determine which of the given mathematical expressions is true, let's analyze each one individually:
1. [tex]\(0.25 \neq \frac{1}{4}\)[/tex]
To compare these values, let's convert the fraction to a decimal:
[tex]\[
\frac{1}{4} = 0.25
\][/tex]
So the expression becomes:
[tex]\[
0.25 \neq 0.25
\][/tex]
This statement is false because 0.25 is equal to itself.
2. [tex]\(1.436 > \frac{25}{2}\)[/tex]
Let's convert the fraction to a decimal or an integer:
[tex]\[
\frac{25}{2} = 12.5
\][/tex]
Thus, the expression becomes:
[tex]\[
1.436 > 12.5
\][/tex]
This statement is false because 1.436 is less than 12.5.
3. [tex]\(0.2185 = \frac{1}{3}\)[/tex]
To compare these values, let’s convert [tex]\(\frac{1}{3}\)[/tex] to a decimal:
[tex]\[
\frac{1}{3} \approx 0.3333\ldots
\][/tex]
Thus, the expression becomes:
[tex]\[
0.2185 = 0.3333\ldots
\][/tex]
This statement is false because 0.2185 is not equal to 0.3333...
4. [tex]\(1.75 > \frac{3}{2}\)[/tex]
Let's convert the fraction to a decimal:
[tex]\[
\frac{3}{2} = 1.5
\][/tex]
Thus, the expression becomes:
[tex]\[
1.75 > 1.5
\][/tex]
This statement is true because 1.75 is greater than 1.5.
Based on this analysis, the true expression is:
[tex]\[
1.75 > \frac{3}{2}
\][/tex]
Therefore, the fourth expression is the only true statement:
[tex]\[
1.75 > 3 / 2
\][/tex]