Answer :
Answer:
[tex]\det (2\, A) = (-32)[/tex].
Step-by-step explanation:
If all items in one particular row of an [tex]n \times n[/tex] ([tex]n[/tex] rows) square matrix [tex]A[/tex] are multiplied with a scalar [tex]k[/tex], the determinant of the resultant matrix would be [tex]k[/tex] times the determinant of the original matrix [tex]A[/tex].
To find the determinant when elements in all rows (not just one row) are multiplied with [tex]k[/tex], apply this property iteratively one row at a time. Start by multiplying all elements in the first row [tex]k\, \det(A)[/tex], the next row [tex]k^{2}\, \det(A)[/tex], until reaching the [tex]n[/tex]th row, [tex]k^{n}\, \det(A)[/tex].
Hence, if [tex]A[/tex] is an [tex]n \times n[/tex] matrix, and elements in all rows in [tex]A[/tex] (i.e., all the elements) are multiplied with a scalar [tex]k[/tex], the determinant of the resultant matrix would be [tex]k^{n}[/tex] times the determinant of [tex]A[/tex]:
[tex]\det (k\, A) = k^{n}\, \det(A)[/tex].
In this question:
- [tex]k = 2[/tex].
- [tex]n = 6[/tex].
- [tex]\det (A) = (-1)[/tex].
Therefore:
[tex]\det(2\, A) = 2^{6}\, \det(A) = 32\times (-1) = (-32)[/tex].