The value of the expression [tex]\(\frac{2x^2}{x} + x(100 - 15x)\)[/tex] when [tex]\(x = 5\)[/tex] is:

A. 119
B. 129
C. 135
D. 145



Answer :

Let’s evaluate the expression [tex]\(\frac{2 x^2}{x} + x(100 - 15x)\)[/tex] when [tex]\(x = 5\)[/tex] step by step.

1. Substitute [tex]\(x = 5\)[/tex] into the expression:
[tex]\[ \frac{2 \cdot 5^2}{5} + 5(100 - 15 \cdot 5) \][/tex]

2. Calculate the first part of the expression [tex]\(\frac{2 \cdot 5^2}{5}\)[/tex]:
[tex]\[ \frac{2 \cdot 25}{5} = \frac{50}{5} = 10 \][/tex]
So, the first part of the expression evaluates to 10.

3. Calculate the second part of the expression [tex]\(5(100 - 15 \cdot 5)\)[/tex]:
[tex]\[ 15 \cdot 5 = 75 \][/tex]
Substituting this back into the second part, we get:
[tex]\[ 5(100 - 75) = 5 \cdot 25 = 125 \][/tex]
So, the second part of the expression evaluates to 125.

4. Sum the two parts:
[tex]\[ 10 + 125 = 135 \][/tex]

Therefore, the value of the expression [tex]\(\frac{2 x^2}{x} + x(100 - 15x)\)[/tex] when [tex]\(x = 5\)[/tex] is [tex]\(\boxed{135}\)[/tex].