Answer :
Para resolver el problema, sigamos los siguientes pasos detalladamente:
1. Identificación de la Mediana Original:
Primero, tenemos que identificar la mediana de las calificaciones actuales del grupo de 5 estudiantes dadas en la tabla:
[tex]\[ \begin{array}{|l|c|c|c|c|c|} \hline Estudiante & 1 & 2 & 3 & 4 & 5 \\ \hline Calificación & 25 & 30 & 32 & 32 & 43 \\ \hline \end{array} \][/tex]
Dado que hay 5 calificaciones, la mediana (el valor central) es el tercer valor cuando las calificaciones están ordenadas. Por lo tanto, la mediana actual es 32.
2. Adición de una Nueva Calificación:
Ahora, añadimos una nueva calificación que es mayor que todas las calificaciones anteriores. Supongamos que esta nueva calificación es 50. Así, la nueva lista de calificaciones sería:
[tex]\[ 25, 30, 32, 32, 43, 50 \][/tex]
3. Reordenación de las Calificaciones:
Las calificaciones ya están ordenadas de menor a mayor:
[tex]\[ 25, 30, 32, 32, 43, 50 \][/tex]
4. Cálculo de la Nueva Mediana:
Con 6 calificaciones ahora, la mediana se calcula tomando los dos valores centrales, es decir, el tercer y cuarto valor en la lista ordenada y luego promediándolos. En este caso, los valores centrales son el tercer y cuarto valor: 32 y 32.
[tex]\[ \text{Mediana} = \frac{32 + 32}{2} = 32.0 \][/tex]
5. Comparación de las Medianas:
Comparando la mediana anterior con la nueva mediana, ambas resultan ser 32.
Por lo tanto, la afirmación correcta acerca de la mediana después de añadir la nueva calificación es:
A) Es igual que la anterior.
Luego, la respuesta final es:
[tex]\[ \boxed{\text{A) Es igual que la anterior.}} \][/tex]
1. Identificación de la Mediana Original:
Primero, tenemos que identificar la mediana de las calificaciones actuales del grupo de 5 estudiantes dadas en la tabla:
[tex]\[ \begin{array}{|l|c|c|c|c|c|} \hline Estudiante & 1 & 2 & 3 & 4 & 5 \\ \hline Calificación & 25 & 30 & 32 & 32 & 43 \\ \hline \end{array} \][/tex]
Dado que hay 5 calificaciones, la mediana (el valor central) es el tercer valor cuando las calificaciones están ordenadas. Por lo tanto, la mediana actual es 32.
2. Adición de una Nueva Calificación:
Ahora, añadimos una nueva calificación que es mayor que todas las calificaciones anteriores. Supongamos que esta nueva calificación es 50. Así, la nueva lista de calificaciones sería:
[tex]\[ 25, 30, 32, 32, 43, 50 \][/tex]
3. Reordenación de las Calificaciones:
Las calificaciones ya están ordenadas de menor a mayor:
[tex]\[ 25, 30, 32, 32, 43, 50 \][/tex]
4. Cálculo de la Nueva Mediana:
Con 6 calificaciones ahora, la mediana se calcula tomando los dos valores centrales, es decir, el tercer y cuarto valor en la lista ordenada y luego promediándolos. En este caso, los valores centrales son el tercer y cuarto valor: 32 y 32.
[tex]\[ \text{Mediana} = \frac{32 + 32}{2} = 32.0 \][/tex]
5. Comparación de las Medianas:
Comparando la mediana anterior con la nueva mediana, ambas resultan ser 32.
Por lo tanto, la afirmación correcta acerca de la mediana después de añadir la nueva calificación es:
A) Es igual que la anterior.
Luego, la respuesta final es:
[tex]\[ \boxed{\text{A) Es igual que la anterior.}} \][/tex]