Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).

Triangle ABC is defined by the points A(3,8), B(7,5), and C(2,3).

Create an equation for a line passing through point A and perpendicular to BC.

y = ___x + ___



Answer :

To create an equation for a line passing through point [tex]\( A(3,8) \)[/tex] and perpendicular to line segment [tex]\( \overline{BC} \)[/tex], we need to follow these steps:

1. Find the slope of line [tex]\( BC \)[/tex]:

[tex]\[ \text{slope of } BC = \frac{y_C - y_B}{x_C - x_B} \][/tex]

Plugging in the coordinates [tex]\( B(7,5) \)[/tex] and [tex]\( C(2,3) \)[/tex]:

[tex]\[ \text{slope of } BC = \frac{3 - 5}{2 - 7} = \frac{-2}{-5} = \frac{2}{5} \][/tex]

2. Find the slope of the line perpendicular to [tex]\( BC \)[/tex]:

The slope of the line perpendicular to another line is the negative reciprocal of the slope of the original line.

Since the slope of [tex]\( BC \)[/tex] is [tex]\( \frac{2}{5} \)[/tex]:

[tex]\[ \text{slope of the perpendicular line} = -\frac{1}{(\frac{2}{5})} = -\frac{5}{2} \][/tex]

3. Use point-slope form to find the equation of the line passing through [tex]\( A(3,8) \)[/tex]:

The point-slope form of a line's equation is:

[tex]\[ y - y_1 = m(x - x_1) \][/tex]

Here, [tex]\( (x_1, y_1) = (3, 8) \)[/tex] and [tex]\( m = -2.5 \)[/tex]:

[tex]\[ y - 8 = -2.5(x - 3) \][/tex]

4. Solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] to get the equation in slope-intercept form ( [tex]\( y = mx + b \)[/tex] ):

Distribute and solve the equation:

[tex]\[ y - 8 = -2.5x + 7.5 \][/tex]

Adding 8 to both sides:

[tex]\[ y = -2.5x + 7.5 + 8 \][/tex]

[tex]\[ y = -2.5x + 15.5 \][/tex]

Thus, the equation of the line passing through point [tex]\( A \)[/tex] and perpendicular to [tex]\( \overline{BC} \)[/tex] is:

[tex]\[ y = -2.5x + 15.5 \][/tex]

So, the correct answer is:

[tex]\[ y = -2.5x + 15.5 \][/tex]