What is the value of [tex]\( x \)[/tex] in the equation [tex]\( 3x - 4y = 65 \)[/tex], when [tex]\( y = 4 \)[/tex]?

A. [tex]\( x = 13 \frac{1}{4} \)[/tex]

B. [tex]\( x = 21 \frac{2}{3} \)[/tex]

C. [tex]\( x = 23 \)[/tex]

D. [tex]\( x = 27 \)[/tex]



Answer :

To find the value of [tex]\( x \)[/tex] in the equation [tex]\( 3x - 4y = 65 \)[/tex] when [tex]\( y = 4 \)[/tex], we can follow these steps:

1. Substitute the value of [tex]\( y \)[/tex] into the equation:

Given:
[tex]\[ 3x - 4y = 65 \][/tex]
and [tex]\( y = 4 \)[/tex], we substitute 4 for [tex]\( y \)[/tex]:

[tex]\[ 3x - 4(4) = 65 \][/tex]

2. Simplify the equation:

Calculate [tex]\( 4(4) \)[/tex]:

[tex]\[ 4 \times 4 = 16 \][/tex]

Substitute 16 into the equation:

[tex]\[ 3x - 16 = 65 \][/tex]

3. Solve for [tex]\( x \)[/tex]:

Add 16 to both sides of the equation to isolate the term with [tex]\( x \)[/tex]:

[tex]\[ 3x = 65 + 16 \][/tex]

This simplifies to:

[tex]\[ 3x = 81 \][/tex]

Now, divide both sides by 3 to solve for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{81}{3} \][/tex]

This simplifies to:

[tex]\[ x = 27 \][/tex]

So, the value of [tex]\( x \)[/tex] is [tex]\( 27 \)[/tex]. Therefore, the correct answer is:
[tex]\[ x = 27 \][/tex]