Answered

What is the kinetic energy of a toy truck with a mass of 0.75 kg and a velocity of 4 m/s?

(Formula: KE = 1/2 mv²)

A. 3 J
B. 6 J
C. 12 J
D. 24 J



Answer :

To determine the kinetic energy of a toy truck, we use the kinetic energy formula:

[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]

Where:
- [tex]\( KE \)[/tex] is the kinetic energy,
- [tex]\( m \)[/tex] is the mass of the object,
- [tex]\( v \)[/tex] is the velocity of the object.

Let's plug in the given values:
- Mass [tex]\( m = 0.75 \)[/tex] kg,
- Velocity [tex]\( v = 4 \)[/tex] m/s.

Following the formula:

1. Square the velocity:
[tex]\[ v^2 = 4^2 = 16 \][/tex]

2. Multiply the mass by the squared velocity:
[tex]\[ m \times v^2 = 0.75 \times 16 = 12 \][/tex]

3. Multiply the result by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ \frac{1}{2} \times 12 = 6 \][/tex]

Thus, the kinetic energy of the toy truck is:

[tex]\[ KE = 6 \, \text{Joules} \][/tex]

Hence, the correct answer is:
[tex]\[ 6 \, \text{J} \][/tex]