First, we need to simplify the expression step-by-step:
1. Distribute the constants within the parentheses:
- For the term [tex]\(4(-8x + 5)\)[/tex], multiply each component inside the parentheses by 4:
[tex]\[
4 \times (-8x) + 4 \times 5 = -32x + 20
\][/tex]
- For the term [tex]\(-(-33x - 26)\)[/tex], multiply each component inside the parentheses by -1:
[tex]\[
-1 \times (-33x) + (-1) \times (-26) = 33x + 26
\][/tex]
2. Combine the simplified parts into one expression:
[tex]\[
-32x + 20 + 33x + 26
\][/tex]
3. Combine like terms:
- Combine the x terms:
[tex]\[
-32x + 33x = x
\][/tex]
- Combine the constant terms:
[tex]\[
20 + 26 = 46
\][/tex]
4. Write the final simplified expression:
[tex]\[
x + 46
\][/tex]
Thus, the simplified expression is [tex]\(x + 46\)[/tex].