Answer :
Certainly! I'll guide you step-by-step to solve for the elapsed time in Trial B and the average speed in Trial A.
### Step 1: Calculate the Elapsed Time for Trial B
To find the elapsed time for Trial B, we subtract the initial time from the final time.
#### Given Data for Trial B:
- Initial Time: 1.5 seconds
- Final Time: 4.6 seconds
#### Calculation:
[tex]\[ \text{Elapsed Time}_B = \text{Final Time}_B - \text{Initial Time}_B \][/tex]
[tex]\[ \text{Elapsed Time}_B = 4.6 \, \text{seconds} - 1.5 \, \text{seconds} \][/tex]
[tex]\[ \text{Elapsed Time}_B = 3.1 \, \text{seconds} \][/tex]
Thus, the elapsed time for Trial B is approximately [tex]\( 3.1 \)[/tex] seconds.
### Step 2: Calculate the Average Speed for Trial A
To find the average speed for Trial A, we use the formula for average speed, which is the total distance traveled divided by the elapsed time.
#### Given Data for Trial A:
- Distance Traveled: 4.0 meters
- Initial Time: 2.0 seconds
- Final Time: 3.6 seconds
#### Steps to Calculate:
1. Calculate the Elapsed Time for Trial A:
[tex]\[ \text{Elapsed Time}_A = \text{Final Time}_A - \text{Initial Time}_A \][/tex]
[tex]\[ \text{Elapsed Time}_A = 3.6 \, \text{seconds} - 2.0 \, \text{seconds} \][/tex]
[tex]\[ \text{Elapsed Time}_A = 1.6 \, \text{seconds} \][/tex]
2. Calculate the Average Speed for Trial A:
[tex]\[ \text{Average Speed}_A = \frac{\text{Distance Traveled}_A}{\text{Elapsed Time}_A} \][/tex]
[tex]\[ \text{Average Speed}_A = \frac{4.0 \, \text{meters}}{1.6 \, \text{seconds}} \][/tex]
[tex]\[ \text{Average Speed}_A = 2.5 \, \text{m/s} \][/tex]
Thus, the average speed for Trial A is [tex]\( 2.5 \, \text{m/s} \)[/tex].
### Summary:
- Elapsed Time for Trial B: [tex]\( 3.1 \)[/tex] seconds
- Average Speed for Trial A: [tex]\( 2.5 \, \text{m/s} \)[/tex]
These values match the results provided.
### Step 1: Calculate the Elapsed Time for Trial B
To find the elapsed time for Trial B, we subtract the initial time from the final time.
#### Given Data for Trial B:
- Initial Time: 1.5 seconds
- Final Time: 4.6 seconds
#### Calculation:
[tex]\[ \text{Elapsed Time}_B = \text{Final Time}_B - \text{Initial Time}_B \][/tex]
[tex]\[ \text{Elapsed Time}_B = 4.6 \, \text{seconds} - 1.5 \, \text{seconds} \][/tex]
[tex]\[ \text{Elapsed Time}_B = 3.1 \, \text{seconds} \][/tex]
Thus, the elapsed time for Trial B is approximately [tex]\( 3.1 \)[/tex] seconds.
### Step 2: Calculate the Average Speed for Trial A
To find the average speed for Trial A, we use the formula for average speed, which is the total distance traveled divided by the elapsed time.
#### Given Data for Trial A:
- Distance Traveled: 4.0 meters
- Initial Time: 2.0 seconds
- Final Time: 3.6 seconds
#### Steps to Calculate:
1. Calculate the Elapsed Time for Trial A:
[tex]\[ \text{Elapsed Time}_A = \text{Final Time}_A - \text{Initial Time}_A \][/tex]
[tex]\[ \text{Elapsed Time}_A = 3.6 \, \text{seconds} - 2.0 \, \text{seconds} \][/tex]
[tex]\[ \text{Elapsed Time}_A = 1.6 \, \text{seconds} \][/tex]
2. Calculate the Average Speed for Trial A:
[tex]\[ \text{Average Speed}_A = \frac{\text{Distance Traveled}_A}{\text{Elapsed Time}_A} \][/tex]
[tex]\[ \text{Average Speed}_A = \frac{4.0 \, \text{meters}}{1.6 \, \text{seconds}} \][/tex]
[tex]\[ \text{Average Speed}_A = 2.5 \, \text{m/s} \][/tex]
Thus, the average speed for Trial A is [tex]\( 2.5 \, \text{m/s} \)[/tex].
### Summary:
- Elapsed Time for Trial B: [tex]\( 3.1 \)[/tex] seconds
- Average Speed for Trial A: [tex]\( 2.5 \, \text{m/s} \)[/tex]
These values match the results provided.