Answered

Select the correct answer.

The values of the impulse and the time interval for various collisions are listed in the table. In which case is the force maximum?

| Collision | Impulse (kg·m/s) | Time Interval (s) |
|-----------|-------------------|-------------------|
| A | 10,000 | 10^3 |
| B | 1,000 | 10^2 |
| C | 100 | 10^1 |
| D | 10 | 10^0 |
| E | 1 | 10^-2 |

A. Collision A
B. Collision B
C. Collision C
D. Collision D
E. Collision E



Answer :

First, we need to understand the concept of force as it relates to impulse and time. The force exerted during a collision can be calculated using the formula:

[tex]\[ F = \frac{\text{Impulse}}{\text{Time Interval}} \][/tex]

We'll apply this formula to each collision case in the provided table.

### Collision A
- Impulse: [tex]\(10,000\)[/tex] kg·m/s
- Time Interval: [tex]\(10^3\)[/tex] s

So, the force for Collision A is:
[tex]\[ F_A = \frac{10{,}000}{10^3} = 10 \text{ N} \][/tex]

### Collision B
- Impulse: [tex]\(1,000\)[/tex] kg·m/s
- Time Interval: [tex]\(10^2\)[/tex] s

So, the force for Collision B is:
[tex]\[ F_B = \frac{1{,}000}{10^2} = 10 \text{ N} \][/tex]

### Collision C
- Impulse: [tex]\(100\)[/tex] kg·m/s
- Time Interval: [tex]\(10^1\)[/tex] s

So, the force for Collision C is:
[tex]\[ F_C = \frac{100}{10^1} = 10 \text{ N} \][/tex]

### Collision D
- Impulse: [tex]\(10\)[/tex] kg·m/s
- Time Interval: [tex]\(10^0\)[/tex] s

So, the force for Collision D is:
[tex]\[ F_D = \frac{10}{10^0} = 10 \text{ N} \][/tex]

### Collision E
- Impulse: [tex]\(1\)[/tex] kg·m/s
- Time Interval: [tex]\(10^{-2}\)[/tex] s

So, the force for Collision E is:
[tex]\[ F_E = \frac{1}{10^{-2}} = 100 \text{ N} \][/tex]

Now, we compare the calculated forces:
- Force for Collision A: [tex]\(10 \text{ N}\)[/tex]
- Force for Collision B: [tex]\(10 \text{ N}\)[/tex]
- Force for Collision C: [tex]\(10 \text{ N}\)[/tex]
- Force for Collision D: [tex]\(10 \text{ N}\)[/tex]
- Force for Collision E: [tex]\(100 \text{ N}\)[/tex]

The maximum force is [tex]\(100 \text{ N}\)[/tex], which occurs in Collision E.

Therefore, the force is maximum in Collision E.