Use the distributive property to rewrite the left side of the equation without parentheses.

Given: [tex]\(10 - 2(k + 4) = 3k - 8\)[/tex]

1. Distribute [tex]\(-2\)[/tex] to both [tex]\(k\)[/tex] and [tex]\(4\)[/tex]:

[tex]\(10 + (-2)(k) + (-2)(4) = 3k - 8\)[/tex]

2. Simplify the expression:

[tex]\(10 - 2k - 8 = 3k - 8\)[/tex]

Final result:

[tex]\[10 - 2k - 8 = 3k - 8\][/tex]



Answer :

Sure, let's solve this step-by-step using the distributive property:

Given equation:
[tex]\[ 10 - 2(k + 4) = 3k - 8 \][/tex]

First, we distribute the [tex]\(-2\)[/tex] to both terms inside the parentheses:

[tex]\[ 10 - 2(k + 4) \][/tex]
[tex]\[ = 10 + (-2 \cdot k) + (-2 \cdot 4) \][/tex]
[tex]\[ = 10 - 2k - 8 \][/tex]

Now, simplify by combining the constant terms:

[tex]\[ = (10 - 8) - 2k \][/tex]
[tex]\[ = 2 - 2k \][/tex]

So we have:
[tex]\[ 2 - 2k = 3k - 8 \][/tex]

To express this in the form [tex]\(10 + \square + \diamond = 3k - 8\)[/tex]:

[tex]\[ 10 + (-2k - 8) = 3k - 8 \][/tex]

Let's break it down further. Since we distributed [tex]\(-2\)[/tex], we have two parts of the distribution:
[tex]\[10 + (-2 \cdot k) + (-2 \cdot 4) = 10 - 2k - 8\][/tex]

Therefore, the box (square) and question mark should be filled with [tex]\(-2k\)[/tex] and [tex]\(-8\)[/tex] respectively:

[tex]\[ 10 + (-2k - 8) = 3k - 8 \][/tex]

So, rewriting your expression step by step:

[tex]\[ \begin{array}{c} 10 - 2(k + 4) = 3k - 8 \\ 10 + (-2k + -8) = 3k - 8 \\ 10 + \square + \diamond = 3k - 8 \end{array} \][/tex]

Where [tex]\(\square\)[/tex] is [tex]\(-2k\)[/tex] and [tex]\(\diamond\)[/tex] is [tex]\(-8\)[/tex].

Let's summarize the final expression:
[tex]\[ 10 + (-2k) + (-8) = 3k - 8 \][/tex]

So,
[tex]\[ 10 + (-2k) + (-8) = 3k - 8 \][/tex]