What is the product?

[tex]\[ \left[\begin{array}{ll}4 & 2\end{array}\right] \times \left[\begin{array}{cc}-2 & 5 \\ 7 & -1\end{array}\right] \][/tex]

A. [tex]\(\left[\begin{array}{l}22 \\ 18\end{array}\right]\)[/tex]

B. [tex]\(\left[\begin{array}{ll}22 & 10\end{array}\right]\)[/tex]

C. [tex]\(\left[\begin{array}{c}6 \\ 18\end{array}\right]\)[/tex]

D. [tex]\(\left[\begin{array}{ll}8 & 10\end{array}\right]\)[/tex]



Answer :

To solve the matrix multiplication problem, we need to multiply row vector [tex]\([4, 2]\)[/tex] with the [tex]\(2 \times 2\)[/tex] matrix [tex]\(\left[\begin{array}{cc}-2 & 5 \\ 7 & -1\end{array}\right]\)[/tex].

Here are the steps to perform this multiplication:

1. Multiply each element of the row vector by the corresponding column in the matrix and sum the results.

2. For the [tex]\(1^{st}\)[/tex] element of the resulting vector:
[tex]\[ (4 \times -2) + (2 \times 7) \][/tex]
3. For the [tex]\(2^{nd}\)[/tex] element of the resulting vector:
[tex]\[ (4 \times 5) + (2 \times -1) \][/tex]

Now performing the computations:
[tex]\[ 4 \times -2 = -8 \][/tex]
[tex]\[ 2 \times 7 = 14 \][/tex]
[tex]\[ -8 + 14 = 6 \][/tex]
This gives us the [tex]\(1^{st} \)[/tex] element of the resulting vector.

Next:
[tex]\[ 4 \times 5 = 20 \][/tex]
[tex]\[ 2 \times -1 = -2 \][/tex]
[tex]\[ 20 - 2 = 18 \][/tex]
This gives us the [tex]\(2^{nd} \)[/tex] element of the resulting vector.

Hence, the resulting vector when multiplying [tex]\([4, 2]\)[/tex] with [tex]\(\left[\begin{array}{cc}-2 & 5 \\ 7 & -1\end{array}\right]\)[/tex] is:
[tex]\[ \left[\begin{array}{c}6 \\ 18\end{array}\right] \][/tex]

Therefore, the correct product is:
[tex]\[ \left[\begin{array}{c}6 \\ 18\end{array}\right] \][/tex]