Solve the equation below. What is the value of [tex]\( d \)[/tex]?

[tex]\[
\frac{3}{2}(7+3d) = 3 + 3d
\][/tex]

Steps:
1. Distribute the [tex]\(\frac{3}{2}\)[/tex] on the left side:
[tex]\[
\frac{3}{2} \cdot 7 + \frac{3}{2} \cdot 3d = 3 + 3d
\][/tex]

2. Simplify:
[tex]\[
\frac{21}{2} + \frac{9d}{2} = 3 + 3d
\][/tex]

3. Multiply through by 2 to eliminate fractions:
[tex]\[
21 + 9d = 6 + 6d
\][/tex]

4. Solve for [tex]\( d \)[/tex]:
[tex]\[
21 + 9d = 6 + 6d \\
21 - 6 = 6d - 9d \\
15 = -3d \\
d = -5
\][/tex]

Therefore, the value of [tex]\( d \)[/tex] is [tex]\( -5 \)[/tex].



Answer :

To solve the given equation for [tex]\( d \)[/tex], we can proceed as follows:

[tex]\[ \frac{3}{2}(7+3d) = 3 + 3d \][/tex]

First, we distribute the [tex]\( \frac{3}{2} \)[/tex] on the left side of the equation:

[tex]\[ \frac{3}{2} \cdot (7 + 3d) = \frac{3}{2} \cdot 7 + \frac{3}{2} \cdot 3d = \frac{21}{2} + \frac{9d}{2} \][/tex]

Thus, the equation now looks like:

[tex]\[ \frac{21}{2} + \frac{9d}{2} = 3 + 3d \][/tex]

Next, to eliminate the fractions, we multiply every term in the equation by 2:

[tex]\[ 2 \cdot \left( \frac{21}{2} + \frac{9d}{2} \right) = 2 \cdot 3 + 2 \cdot 3d \][/tex]

This simplifies to:

[tex]\[ 21 + 9d = 6 + 6d \][/tex]

Now, we have a linear equation:

[tex]\[ 21 + 9d = 6 + 6d \][/tex]

To solve for [tex]\( d \)[/tex], we first get all the [tex]\( d \)[/tex]-terms on one side and the constants on the other side. Subtract [tex]\( 6d \)[/tex] from both sides:

[tex]\[ 21 + 9d - 6d = 6 + 6d - 6d \][/tex]

This simplifies to:

[tex]\[ 21 + 3d = 6 \][/tex]

Next, we isolate the term with [tex]\( d \)[/tex] by subtracting 21 from both sides:

[tex]\[ 3d = 6 - 21 \][/tex]

[tex]\[ 3d = -15 \][/tex]

Finally, we solve for [tex]\( d \)[/tex] by dividing both sides by 3:

[tex]\[ d = \frac{-15}{3} \][/tex]

[tex]\[ d = -5 \][/tex]

So, the value of [tex]\( d \)[/tex] is:

[tex]\[ d = -5 \][/tex]