Drag the tiles to the correct boxes to complete the pairs.

Match the products of rational expressions with their simplest forms.

1. [tex]\(\frac{-3x^2}{2y^2} \times \frac{y^2}{9x}\)[/tex]
2. [tex]\(\frac{5y^2}{10x^2} \times \frac{4x^2}{y}\)[/tex]
3. [tex]\(\frac{-9y^2}{5x} \times \frac{-10x^2}{3y}\)[/tex]
4. [tex]\(\frac{14x^2}{5y} \times \frac{-10y}{7x}\)[/tex]

[tex]\[
\begin{aligned}
\text{A.} & \quad -4x \\
\text{B.} & \quad 2y \\
\end{aligned}
\][/tex]

1 [tex]\(\longrightarrow\)[/tex] [ ]
2 [tex]\(\longrightarrow\)[/tex] [ ]
3 [tex]\(\longrightarrow\)[/tex] [ ]
4 [tex]\(\longrightarrow\)[/tex] [ ]



Answer :

Let's match each product of rational expressions with their simplest forms.

1. Consider the first expression:
[tex]\[ \frac{-3 x^2}{2 y^2} \times \frac{y^2}{9 x} \][/tex]
Simplifying step-by-step:
- The [tex]\( y^2 \)[/tex] terms in the numerator and denominator cancel out.
- This leaves:
[tex]\[ \frac{-3 x^2}{2} \times \frac{1}{9 x} = \frac{-3 x^2}{18 x} \][/tex]
- Simplify by canceling one [tex]\( x \)[/tex]:
[tex]\[ \frac{-3 x}{18} = -\frac{x}{6} \][/tex]
Therefore, [tex]\(\frac{-3 x^2}{2 y^2} \times \frac{y^2}{9 x} \rightarrow -\frac{x}{6}\)[/tex].

2. Consider the second expression:
[tex]\[ \frac{5 y^2}{10 x^2} \times \frac{4 x^2}{y} \][/tex]
Simplifying step-by-step:
- The [tex]\( x^2 \)[/tex] terms in the numerator and denominator cancel out.
- This leaves:
[tex]\[ \frac{5 y^2}{10} \times \frac{4}{y} = \frac{5 y^2 \cdot 4}{10 y} = \frac{20 y^2}{10 y} \][/tex]
- Simplify by canceling one [tex]\( y \)[/tex]:
[tex]\[ \frac{20 y}{10} = 2 y \][/tex]
Therefore, [tex]\(\frac{5 y^2}{10 x^2} \times \frac{4 x^2}{y} \rightarrow 2 y\)[/tex].

3. Consider the third expression:
[tex]\[ \frac{-9 y^2}{5 x} \times \frac{-10 x^2}{3 y} \][/tex]
Simplifying step-by-step:
- Combine the expressions:
[tex]\[ \frac{-9 y^2 \times -10 x^2}{5 x \times 3 y} = \frac{90 x^2 y^2}{15 x y} \][/tex]
- Simplify by canceling one [tex]\( x \)[/tex] and one [tex]\( y \)[/tex]:
[tex]\[ \frac{90 x y}{15} = 6 x y \][/tex]
Therefore, [tex]\(\frac{-9 y^2}{5 x} \times \frac{-10 x^2}{3 y} \rightarrow 6 x y\)[/tex].

4. Consider the fourth expression:
[tex]\[ \frac{14 x^2}{5 y} \times \frac{-10 y}{7 x} \][/tex]
Simplifying step-by-step:
- The [tex]\( y \)[/tex] terms in the numerator and denominator cancel out.
- This leaves:
[tex]\[ \frac{14 x^2 \times -10}{5 \times 7 x} = \frac{-140 x^2}{35 x} \][/tex]
- Simplify by canceling one [tex]\( x \)[/tex]:
[tex]\[ \frac{-140 x}{35} = -4 x \][/tex]
Therefore, [tex]\(\frac{14 x^2}{5 y} \times \frac{-10 y}{7 x} \rightarrow -4 x\)[/tex].

So we can complete the pairs accordingly:

[tex]\[ \boxed{ \begin{array}{cc} \frac{-3 x^2}{2 y^2} \times \frac{y^2}{9 x} & \rightarrow -\frac{x}{6} \\ \frac{5 y^2}{10 x^2} \times \frac{4 x^2}{y} & \rightarrow 2 y \\ \frac{-9 y^2}{5 x} \times \frac{-10 x^2}{3 y} & \rightarrow 6 x y \\ \frac{14 x^2}{5 y} \times \frac{-10 y}{7 x} & \rightarrow -4 x \\ \end{array} } \][/tex]