Select the correct answer from the drop-down menu.

Find the missing term.

[tex]\[
\frac{m-n}{m^2-n^2}+\frac{\square}{(m-1)(m-n)}=\frac{2m}{m^2-n^2}
\][/tex]

Replace the question mark (?) with [tex]\(\square\)[/tex] to make the equation true.



Answer :

Sure, let’s find the missing term that makes the equation true. The equation given is:

[tex]\[ \frac{m-n}{m^2 - n^2} + \frac{\square}{(m-1)(m-n)} = \frac{2m}{m^2 - n^2} \][/tex]

### Step-by-Step Solution:

1. Factor the denominator [tex]\(m^2 - n^2\)[/tex]:
[tex]\[ m^2 - n^2 = (m-n)(m+n) \][/tex]
So, the equation can be rewritten as:
[tex]\[ \frac{m-n}{(m-n)(m+n)} + \frac{\square}{(m-1)(m-n)} = \frac{2m}{(m-n)(m+n)} \][/tex]

2. Simplify the first term:
[tex]\[ \frac{m-n}{(m-n)(m+n)} = \frac{1}{m+n} \][/tex]
So, now the equation is:
[tex]\[ \frac{1}{m+n} + \frac{\square}{(m-1)(m-n)} = \frac{2m}{(m-n)(m+n)} \][/tex]

3. Find a common denominator for the left side:
The common denominator for the left side terms is [tex]\((m-1)(m-n)(m+n)\)[/tex]. Rewriting our equation with this common denominator:
[tex]\[ \frac{(m-1)(m-n)}{(m+n)(m-1)(m-n)} + \frac{\square (m+n)}{(m-1)(m-n)(m+n)} = \frac{2m}{(m-n)(m+n)} \][/tex]

4. Combine the fractions on the left side:
[tex]\[ \frac{m-1}{(m-1)(m-n)(m+n)} + \frac{\square}{(m-1)(m-n)} = \frac{2m}{(m-n)(m+n)} \][/tex]
Since the denominators are now the same, we can combine the numerators:
[tex]\[ \frac{(m-1) + \square}{(m-1)(m-n)(m+n)} = \frac{2m}{(m-n)(m+n)} \][/tex]

5. Equate the numerators:
By comparing the numerators of the fractions:
[tex]\[ (m-1) + \square = 2m \][/tex]

6. Solve for [tex]\(\square\)[/tex]:
[tex]\[ \square = 2m - (m-1) \][/tex]
Simplify the right-hand side:
[tex]\[ \square = 2m - m + 1 = m + 1 \][/tex]

### Conclusion:
The missing term is [tex]\(\boxed{m + 1}\)[/tex].

Therefore, to make the equation true, you should replace the question mark with:

[tex]\[ \boxed{m + 1} \][/tex]