Which expression is equivalent to the expression below?

[tex]\[
\frac{\frac{m+3}{m^2-16}}{\frac{m^2-9}{m+4}}
\][/tex]

A. [tex]\(\frac{1}{(m+4)(m+3)}\)[/tex]
B. [tex]\(\frac{1}{(m-4)(m-3)}\)[/tex]
C. [tex]\(\frac{m-4}{m-3}\)[/tex]
D. [tex]\(\frac{m+3}{m+4}\)[/tex]



Answer :

To find an expression equivalent to

[tex]\[ \frac{\frac{m+3}{m^2-16}}{\frac{m^2-9}{m+4}} \][/tex]

we will first simplify the given expression step-by-step.

### Step 1: Simplify the Denominators by Factoring
We start by factoring the denominators [tex]\( m^2 - 16 \)[/tex] and [tex]\( m^2 - 9 \)[/tex]:

1. [tex]\( m^2 - 16 \)[/tex] is a difference of squares and can be factored as:
[tex]\[ m^2 - 16 = (m - 4)(m + 4) \][/tex]

2. [tex]\( m^2 - 9 \)[/tex] is also a difference of squares and can be factored as:
[tex]\[ m^2 - 9 = (m - 3)(m + 3) \][/tex]

### Step 2: Rewrite the Expression
Using these factorizations, we rewrite the original complex fraction:

[tex]\[ \frac{\frac{m+3}{(m-4)(m+4)}}{\frac{(m-3)(m+3)}{m+4}} \][/tex]

### Step 3: Simplify the Fraction
To divide by a fraction, we multiply by its reciprocal. Thus, the expression becomes:

[tex]\[ \frac{m+3}{(m-4)(m+4)} \times \frac{m+4}{(m-3)(m+3)} \][/tex]

### Step 4: Cancel Common Factors
We observe that [tex]\( (m+4) \)[/tex] and [tex]\( (m+3) \)[/tex] appear in both the numerator and denominator, allowing these terms to be canceled:

[tex]\[ \frac{m+3}{(m-4)(m+4)} \times \frac{m+4}{(m-3)(m+3)} = \frac{1}{(m-4)} \times \frac{1}{(m-3)} \][/tex]

Thus, the expression simplifies to:

[tex]\[ \frac{1}{(m-4)(m-3)} \][/tex]

### Conclusion
The expression equivalent to the given complex fraction is

[tex]\[ \boxed{\frac{1}{(m-4)(m-3)}} \][/tex]

Therefore, the correct answer is the second option:

[tex]\(\frac{1}{(m-4)(m-3)}\)[/tex]