Express the difference in simplest form:

[tex]\(\frac{3t^2}{5} - \frac{4t^2}{15}\)[/tex]

A. [tex]\(\frac{t^2}{5}\)[/tex]

B. [tex]\(\frac{7t^2}{10}\)[/tex]

C. [tex]\(\frac{t^2}{3}\)[/tex]

D. [tex]\(\frac{t^2}{15}\)[/tex]



Answer :

To express the given difference in its simplest form, we proceed as follows:

[tex]\[ \frac{3 t^2}{5}-\frac{4 t^2}{15} \][/tex]

First, we need a common denominator to subtract these fractions. The denominators are 5 and 15, and the least common multiple (LCM) of these numbers is 15. Therefore, we need to express [tex]\(\frac{3 t^2}{5}\)[/tex] with a denominator of 15:

[tex]\[ \frac{3 t^2}{5} = \frac{3 t^2 \cdot 3}{5 \cdot 3} = \frac{9 t^2}{15} \][/tex]

Now, rewrite the original subtraction problem using the common denominator:

[tex]\[ \frac{9 t^2}{15} - \frac{4 t^2}{15} \][/tex]

Since the denominators are now the same, we can subtract the numerators directly:

[tex]\[ \frac{9 t^2 - 4 t^2}{15} = \frac{5 t^2}{15} \][/tex]

Next, we simplify the fraction [tex]\(\frac{5 t^2}{15}\)[/tex] by dividing both the numerator and the denominator by their greatest common divisor, which is 5:

[tex]\[ \frac{5 t^2 \div 5}{15 \div 5} = \frac{t^2}{3} \][/tex]

Thus, the simplest form of the given expression [tex]\(\frac{3 t^2}{5} - \frac{4 t^2}{15}\)[/tex] is:

[tex]\[ \boxed{\frac{t^2}{3}} \][/tex]

From the given answer choices, the correct choice is:

C. [tex]\(\frac{t^2}{3}\)[/tex]