Refer to matrix [tex]\( A \)[/tex] and identify the matrix element [tex]\( a_{31} \)[/tex].

[tex]\[
A = \begin{bmatrix}
0 & -1 \\
1.5 & 3 \\
7 & -2
\end{bmatrix}
\][/tex]

A. 7
B. -1
C. 3
D. -2



Answer :

Sure, let's identify the matrix element [tex]\( a_{31} \)[/tex] in the given matrix [tex]\( A \)[/tex]:

[tex]\[ A = \begin{pmatrix} 0 & -1 \\ 1.5 & 3 \\ 7 & -2 \end{pmatrix} \][/tex]

The subscript [tex]\( a_{ij} \)[/tex] represents the element located at the [tex]\( i \)[/tex]-th row and [tex]\( j \)[/tex]-th column of the matrix.

Here, [tex]\( a_{31} \)[/tex]:
- The first index (3) indicates the row.
- The second index (1) indicates the column.

So, [tex]\( a_{31} \)[/tex] is the element in the 3rd row and 1st column of the matrix [tex]\( A \)[/tex].

Let's examine the 3rd row:

[tex]\[ \begin{pmatrix} 7 & -2 \end{pmatrix} \][/tex]

Now we look at the 1st element in this row:
[tex]\[ 7 \][/tex]

Therefore, the matrix element [tex]\( a_{31} \)[/tex] is [tex]\( 7 \)[/tex].