Solve the equation:

[tex]\(\frac{3}{x+6} = \frac{18}{x^2 + 6x}\)[/tex]

Examine the table and select the accurate number of each type of solution, as well as any viable solutions.

[tex]\[
\begin{tabular}{|c|c|c|}
\hline
\text{Number of Viable Solutions} & \text{Number of Extraneous Solutions} & \text{Viable Solution(s)} \\
\hline
0 & 0 & \(x = 0\) \\
1 & 1 & \(x = 0, x = 3\) \\
\hline
\end{tabular}
\][/tex]



Answer :

To solve the given equation [tex]\(\frac{3}{x + 6} = \frac{18}{x^2 + 6x}\)[/tex], let's go through a step-by-step solution.

1. Rewrite the equation:
[tex]\[ \frac{3}{x + 6} = \frac{18}{x^2 + 6x} \][/tex]

Notice that [tex]\(x^2 + 6x\)[/tex] can be factored as:
[tex]\[ x^2 + 6x = x(x + 6) \][/tex]

Thus, the equation becomes:
[tex]\[ \frac{3}{x + 6} = \frac{18}{x(x + 6)} \][/tex]

2. Combine the fractions:
Since [tex]\(\frac{18}{x(x+6)}\)[/tex] can be simplified by dividing numerator and denominator by 6:
[tex]\[ \frac{18}{x(x + 6)} = \frac{3 \cdot 6}{x(x + 6)} = \frac{3}{x} \][/tex]

The equation simplifies to:
[tex]\[ \frac{3}{x + 6} = \frac{3}{x} \][/tex]

3. Cross-multiply:
[tex]\[ 3x = 3(x + 6) \][/tex]

4. Expand and simplify:
[tex]\[ 3x = 3x + 18 \][/tex]

5. Solve for [tex]\(x\)[/tex]:
Subtract [tex]\(3x\)[/tex] from both sides:
[tex]\[ 0 = 18 \][/tex]

This indicates no real solution, but let's identify possible values for [tex]\( x \)[/tex] from simplified patterns before verifying:

6. Consider potential solutions:
For [tex]\( \frac{3}{x + 6} = \frac{3}{x} \)[/tex], equate the denominators (since the numerators are equal and non-zero):
[tex]\[ x = x + 6 - 6x = 0 \][/tex]
or collision tests might suggest [tex]\(x = 6\)[/tex].

Check whether the solutions are viable by substituting each of them back into the original equation:

[tex]\[ \frac{3}{x + 6} = \frac{18}{x(x+6)} \][/tex]

8. Substitute potential solutions:

Is [tex]\( x = 0 \)[/tex] valid?
[tex]\[ \frac{3}{0+6} = \frac{3}{6} = \frac{18}{0(0 + 6)} = \frac{18}{0}, \text{undefined.} \][/tex]

Is [tex]\( x = 6 \)[/tex]?
[tex]\[ \frac{3}{6 + 6} = \frac{3}{12} = \frac{18}{6(6 + 6 )} = \frac{18}{6 \cdot 12} \text{ valid value.} \][/tex]

Therefore, we have the correct identified:

\[
(1, 0, 6)
]

The correct solution to place into the table is thus:

\begin{tabular}{|c|c|c|}
\hline
Number of Viable Solutions & Number of Extraneous Solutions & Viable Solution(s) \\
\hline
1 & 0 & [tex]\( x=6 \)[/tex] \\
\hline
\end{tabular}