Refer to matrix [tex]\( A \)[/tex] and identify the matrix element [tex]\( a_{32} \)[/tex].

[tex]\[
A = \begin{bmatrix}
0 & -1 \\
1.5 & 3 \\
7 & -2
\end{bmatrix}
\][/tex]

A. [tex]\(-1\)[/tex]
B. [tex]\(-2\)[/tex]
C. 7
D. 0



Answer :

To identify the matrix element [tex]\( a_{32} \)[/tex] from the given matrix [tex]\( A \)[/tex], let's follow these steps:

1. Understand matrix indexing: In a matrix, the element [tex]\( a_{ij} \)[/tex] refers to the element located in the [tex]\( i \)[/tex]-th row and [tex]\( j \)[/tex]-th column.

The matrix [tex]\( A \)[/tex] given is:
[tex]\[ A = \begin{pmatrix} 0 & -1 \\ 1.5 & 3 \\ 7 & -2 \end{pmatrix} \][/tex]

2. Identify the element [tex]\( a_{32} \)[/tex]:
- The first index (3) indicates the row number, so we look at the 3rd row.
- The second index (2) indicates the column number, so we look at the 2nd column.

3. Find the third row of matrix [tex]\( A \)[/tex]:
[tex]\[ \begin{pmatrix} 7 & -2 \end{pmatrix} \][/tex]

4. Locate the second element from the third row:
[tex]\[ -2 \][/tex]

Thus, the matrix element [tex]\( a_{32} \)[/tex] is [tex]\(-2\)[/tex].

So, the correct answer is [tex]\(\boxed{-2}\)[/tex].