Use the product property of roots to choose the expression equivalent to [tex]\( \sqrt[3]{5x} \cdot \sqrt[3]{25x^2} \)[/tex].

A. [tex]\( \sqrt[3]{30x} \)[/tex]

B. [tex]\( \sqrt[3]{125x^3} \)[/tex]

C. [tex]\( \sqrt[3]{30x^2} \)[/tex]

D. [tex]\( \sqrt[6]{125x^3} \)[/tex]



Answer :

To solve the problem of finding the expression equivalent to [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex], we can use the product property of roots. The product property of roots states that for any positive numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex] and any integer [tex]\(n\)[/tex]:
[tex]\[ \sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab} \][/tex]

In this case, since both roots are cube roots ([tex]\(n = 3\)[/tex]), we can combine them under a single cube root. Let's start with the given expressions:

[tex]\[ \sqrt[3]{5x} \text{ and } \sqrt[3]{25x^2} \][/tex]

Using the product property:
[tex]\[ \sqrt[3]{5x} \cdot \sqrt[3]{25x^2} = \sqrt[3]{(5x) \cdot (25x^2)} \][/tex]

Next, we multiply the expressions inside the cube root:
[tex]\[ (5x) \cdot (25x^2) = 5 \cdot 25 \cdot x \cdot x^2 \][/tex]

Calculate the numerical multiplication:
[tex]\[ 5 \cdot 25 = 125 \][/tex]

And combine the powers of [tex]\(x\)[/tex]:
[tex]\[ x \cdot x^2 = x^{1+2} = x^3 \][/tex]

So, we have:
[tex]\[ (5x) \cdot (25x^2) = 125x^3 \][/tex]

Thus, combining these within the cube root gives us:
[tex]\[ \sqrt[3]{125x^3} \][/tex]

Therefore, the expression equivalent to [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex] is:
[tex]\[ \boxed{\sqrt[3]{125x^3}} \][/tex]