Drag the tiles to the correct boxes to complete the pairs.

Use this table to match the molecules with their estimated masses.

[tex]\[
\begin{array}{|c|c|}
\hline
\text{Atom} & \text{Mass (in grams)} \\
\hline
\text{hydrogen} & 1.67 \times 10^{-24} \\
\hline
\text{oxygen} & 2.66 \times 10^{-23} \\
\hline
\text{carbon} & 1.99 \times 10^{-23} \\
\hline
\text{nitrogen} & 2.32 \times 10^{-23} \\
\hline
\end{array}
\][/tex]

- [tex]\(H_2\)[/tex] (2 atoms of hydrogen)
- [tex]\(CO_2\)[/tex] (1 atom of carbon and 2 atoms of oxygen)
- [tex]\(NO_2\)[/tex] (1 atom of nitrogen and 2 atoms of oxygen)
- [tex]\(NH_3\)[/tex] (1 atom of nitrogen and 3 atoms of hydrogen)



Answer :

Certainly! Let's match the molecules with their estimated masses.

Hydrogen (H[tex]\(_2\)[/tex]):
- H[tex]\(_2\)[/tex] consists of 2 atoms of hydrogen.
- The mass of hydrogen is [tex]\(1.67 \times 10^{-24}\)[/tex] grams.
- Therefore, the mass of H[tex]\(_2\)[/tex] is calculated as:
[tex]\[ \text{Mass of H}_2 = 2 \times (1.67 \times 10^{-24}) = 3.34 \times 10^{-24} \text{ grams} \][/tex]

Carbon Dioxide (CO[tex]\(_2\)[/tex]):
- CO[tex]\(_2\)[/tex] consists of 1 atom of carbon and 2 atoms of oxygen.
- The mass of carbon is [tex]\(1.99 \times 10^{-23}\)[/tex] grams.
- The mass of oxygen is [tex]\(2.66 \times 10^{-23}\)[/tex] grams.
- Therefore, the mass of CO[tex]\(_2\)[/tex] is calculated as:
[tex]\[ \text{Mass of CO}_2 = 1 \times (1.99 \times 10^{-23}) + 2 \times (2.66 \times 10^{-23}) = 7.31 \times 10^{-23} \text{ grams} \][/tex]

Nitrogen Dioxide (NO[tex]\(_2\)[/tex]):
- NO[tex]\(_2\)[/tex] consists of 1 atom of nitrogen and 2 atoms of oxygen.
- The mass of nitrogen is [tex]\(2.32 \times 10^{-23}\)[/tex] grams.
- The mass of oxygen is [tex]\(2.66 \times 10^{-23}\)[/tex] grams.
- Therefore, the mass of NO[tex]\(_2\)[/tex] is calculated as:
[tex]\[ \text{Mass of NO}_2 = 1 \times (2.32 \times 10^{-23}) + 2 \times (2.66 \times 10^{-23}) = 7.64 \times 10^{-23} \text{ grams} \][/tex]

Ammonia (NH[tex]\(_3\)[/tex]):
- NH[tex]\(_3\)[/tex] consists of 1 atom of nitrogen and 3 atoms of hydrogen.
- The mass of nitrogen is [tex]\(2.32 \times 10^{-23}\)[/tex] grams.
- The mass of hydrogen is [tex]\(1.67 \times 10^{-24}\)[/tex] grams.
- Therefore, the mass of NH[tex]\(_3\)[/tex] is calculated as:
[tex]\[ \text{Mass of NH}_3 = 1 \times (2.32 \times 10^{-23}) + 3 \times (1.67 \times 10^{-24}) = 2.821 \times 10^{-23} \text{ grams} \][/tex]

Based on the calculated masses, we can pair the molecules with their respective masses as follows:

Pairs:
- [tex]\(H_2\)[/tex]: [tex]\(3.34 \times 10^{-24}\)[/tex]
- [tex]\(CO_2\)[/tex]: [tex]\(7.31 \times 10^{-23}\)[/tex]
- [tex]\(NO_2\)[/tex]: [tex]\(7.64 \times 10^{-23}\)[/tex]
- [tex]\(NH_3\)[/tex]: [tex]\(2.821 \times 10^{-23}\)[/tex]

So, the matching is:

- [tex]\(H_2\)[/tex] : [tex]\(3.34 \times 10^{-24}\)[/tex] grams
- [tex]\(CO_2\)[/tex] : [tex]\(7.31 \times 10^{-23}\)[/tex] grams
- [tex]\(NO_2\)[/tex] : [tex]\(7.64 \times 10^{-23}\)[/tex] grams
- [tex]\(NH_3\)[/tex] : [tex]\(2.821 \times 10^{-23}\)[/tex] grams

Other Questions