To find the product of [tex]\((-2 \sqrt{20 k})(5 \sqrt{8 k^3})\)[/tex], first write using a single radical. Which expression is equivalent to the given product?

A. [tex]\(-10 \sqrt{160 k^3}\)[/tex]
B. [tex]\(-10 \sqrt{160 k^4}\)[/tex]
C. [tex]\(3 \sqrt{28 k^4}\)[/tex]
D. [tex]\(3 \sqrt{28 k^3}\)[/tex]



Answer :

Certainly! Let's go through the steps to find the product of [tex]\((-2 \sqrt{20k})\)[/tex] and [tex]\(5 \sqrt{8k^3}\)[/tex].

1. Express Each Term Separately:
[tex]\[ (-2 \sqrt{20k}) \quad \text{and} \quad (5 \sqrt{8k^3}) \][/tex]

2. Multiply the Coefficients and the Radicals Separately:

Coefficients:
[tex]\[ (-2) \times 5 = -10 \][/tex]

Radicals:
[tex]\[ \sqrt{20k} \times \sqrt{8k^3} \][/tex]

3. Combine the Radicals into One Square Root:

When multiplying square roots, you can combine them under a single square root:
[tex]\[ \sqrt{20k} \times \sqrt{8k^3} = \sqrt{(20k) \times (8k^3)} \][/tex]

4. Simplify the Expression Inside the Radical:

Multiply the terms inside the square root:
[tex]\[ 20k \times 8k^3 = 160k^4 \][/tex]

5. Combine the Results:

So, we now have:
[tex]\[ -10 \sqrt{160k^4} \][/tex]

6. Check the Matching Expressions:

From the options given:
- [tex]\(-10 \sqrt{160 k^3}\)[/tex]
- [tex]\(-10 \sqrt{160 k^4}\)[/tex]
- [tex]\(3 \sqrt{28 k^4}\)[/tex]
- [tex]\(3 \sqrt{28 k^3}\)[/tex]

The expression [tex]\(-10 \sqrt{160 k^4}\)[/tex] correctly matches our result.

Thus, the equivalent expression for the product [tex]\((-2 \sqrt{20k})(5 \sqrt{8k^3})\)[/tex] is:
[tex]\[ -10 \sqrt{160 k^4} \][/tex]