Which expressions are equivalent to [tex]\( 8(-10x + 3.5y - 7) \)[/tex]? Select two options.

A. [tex]\( -80x + 24.5y - 58 \)[/tex]

B. [tex]\( -80x + 28y - 58 \)[/tex]

C. [tex]\( 80x + 28y + 58 \)[/tex]

D. [tex]\( 4(-20x + 7y - 14) \)[/tex]

E. [tex]\( -4(-20x + 7y - 14) \)[/tex]



Answer :

To determine which expressions are equivalent to [tex]\( 8(-10x + 3.5y - 7) \)[/tex], we need to simplify each option and compare it to the given expression.

Let's start with the given expression and each of the options one-by-one.

Given Expression:
[tex]\[ 8(-10x + 3.5y - 7) \][/tex]

First, distribute the 8 in the expression:
[tex]\[ = 8 \cdot (-10x) + 8 \cdot (3.5y) + 8 \cdot (-7) \][/tex]
[tex]\[ = -80x + 28y - 56 \][/tex]

Now, let’s compare this with each provided option.

### Option 1:
[tex]\[ -80x + 24.5y - 58 \][/tex]

This is not equivalent to [tex]\(-80x + 28y - 56\)[/tex] as the coefficients of [tex]\(y\)[/tex] and the constants do not match.

### Option 2:
[tex]\[ -80x + 28y - 58 \][/tex]

This is not equivalent to [tex]\(-80x + 28y - 56\)[/tex] since the constant term does not match.

### Option 3:
[tex]\[ 80x + 28y + 58 \][/tex]

This is clearly not equivalent to [tex]\(-80x + 28y - 56\)[/tex] since both the sign and the constant term are different.

### Option 4:
[tex]\[ 4(-20x + 7y - 14) \][/tex]

First, distribute the 4:
[tex]\[ = 4 \cdot (-20x) + 4 \cdot (7y) + 4 \cdot (-14) \][/tex]
[tex]\[ = -80x + 28y - 56 \][/tex]

This matches the expression [tex]\( -80x + 28y - 56 \)[/tex].

### Option 5:
[tex]\[ -4(-20x + 7y - 14) \][/tex]

First, distribute the -4:
[tex]\[ = -4 \cdot (-20x) + -4 \cdot (7y) + -4 \cdot (-14) \][/tex]
[tex]\[ = 80x - 28y + 56 \][/tex]

This is not equivalent to [tex]\(-80x + 28y - 56\)[/tex] since both the signs of the coefficients and the constant term are reversed.

Given these calculations, the only expression that is equivalent to [tex]\( 8(-10x + 3.5y - 7) \)[/tex] is:

[tex]\[ 4(-20x + 7y - 14) \][/tex]

Therefore, the correct answer is:
[tex]\[ 4(-20x + 7y - 14) \][/tex]