Match each radical equation with its solution:

1. [tex]\(\sqrt{(x-1)^3} = 8\)[/tex]
2. [tex]\(\sqrt[4]{(x-3)^5} = 32\)[/tex]
3. [tex]\(\sqrt{(x-4)^3} = 125\)[/tex]
4. [tex]\(\sqrt[3]{(x+2)^4} = 16\)[/tex]

A. [tex]\(x = 29\)[/tex]
B. [tex]\(x = 5\)[/tex]

Drag the tiles to the correct boxes to complete the pairs.



Answer :

Alright, let's solve each of these radical equations step-by-step to find the correct matches.

### Step-by-Step Solution:

1. Equation: [tex]\( \sqrt{(x-1)^3} = 8 \)[/tex]
- To isolate [tex]\( x \)[/tex]:
[tex]\[ (x-1)^3 = 8^2 \\ (x-1)^3 = 64 \\ x - 1 = 64^{1/3} \\ x - 1 = 4 \\ x = 5 \][/tex]
- Therefore, [tex]\( x = 5 \)[/tex] for [tex]\( \sqrt{(x-1)^3} = 8 \)[/tex].

2. Equation: [tex]\( \sqrt[4]{(x-3)^5} = 32 \)[/tex]
- To isolate [tex]\( x \)[/tex]:
[tex]\[ (x-3)^5 = 32^4 \\ (x-3)^5 = 1048576 \\ x - 3 = 1048576^{1/5} \\ x - 3 \approx 16.34 \\ x \approx 19.34 \][/tex]
- However, there is no matching solution for [tex]\( x = 19.34 \)[/tex] given in the set.

3. Equation: [tex]\( \sqrt{(x-4)^3} = 125 \)[/tex]
- To isolate [tex]\( x \)[/tex]:
[tex]\[ (x-4)^3 = 125^2 \\ (x-4)^3 = 15625 \\ x - 4 = 15625^{1/3} \\ x - 4 \approx 25 \\ x \approx 29 \][/tex]
- Therefore, [tex]\( x = 29 \)[/tex] for [tex]\( \sqrt{(x-4)^3} = 125 \)[/tex].

4. Equation: [tex]\( \sqrt[3]{(x+2)^4} = 16 \)[/tex]
- To isolate [tex]\( x \)[/tex]:
[tex]\[ (x+2)^4 = 16^3 \\ (x+2)^4 = 4096 \\ x + 2 = 4096^{1/4} \\ x + 2 = 8 \\ x = 6 \][/tex]
- Therefore, [tex]\( x = 6 \)[/tex] for [tex]\( \sqrt[3]{(x+2)^4} = 16 \)[/tex].

### Matching Equations to Solutions:

- [tex]\( \sqrt{(x-1)^3} = 8 \)[/tex] corresponds to [tex]\( x = 5 \)[/tex].
- [tex]\( \sqrt{(x-4)^3} = 125 \)[/tex] corresponds to [tex]\( x = 29 \)[/tex].
- The remaining equation ([tex]\( \sqrt[3]{(x+2)^4} = 16 \)[/tex]) corresponds to [tex]\( x = 6 \)[/tex].

Therefore, the matches are:
- [tex]\( x = 5 \)[/tex] [tex]\(\longrightarrow\)[/tex] [tex]\( \sqrt{(x-1)^3} = 8 \)[/tex]
- [tex]\( x = 29 \)[/tex] [tex]\(\longrightarrow\)[/tex] [tex]\( \sqrt{(x-4)^3} = 125 \)[/tex]